Genomic prediction of ordinal traits via application of the BLASSO and BayesCπ methods in simulated data
DOI:
https://doi.org/10.33837/msj.v3i1.1112Palavras-chave:
genomic selection, bayesian methods, ANOVA, ranking, molecular markersResumo
This paper aims at evaluating the use of BLASSO and BayesCπ methods for the genomic prediction of ordinal traits, studying factors that influence the performance of the models, and if there is a difference in the ranking of individuals. Genotypic and phenotypic information from a simulated population of 4,100 animals, genotyped by 10k markers (QTL-MAS Workshop) were used. 3,000 animals were used for estimation of the predictive ability and bias accessed through 5-fold cross-validation with five repetitions. The other animals were used as a population of selection. One ANOVA and the Ryan-Einot-Gabriel-Welch test were performed to verify, respectively, which factors influence significantly the genomic prediction and if there is a statistical difference between the models. The results show that the four main factors significantly (p < 0.05) affect the predictive ability of GEBVs (genomic estimated breeding values), and that heritability and the number of categories are the most influential factors. Only for ordinal trait 2, with a density of 9k, significant differences (p < 0.05) were observed between the predictive ability of the methods. In general, the BayesCπ method proved to be more efficient in the identification of relevant SNPs and in the ranking of individuals. Finally, there is a slight superiority of the BayesCπ method for the genomic prediction of ordinal traits.
Referências
Atefi, A., ShadparvaR, A. A., & Hossein-Zadeh, N. G. (2016). Comparison of whole genome prediction accuracy across generations using parametric and semi parametric methods. Acta Scientiarum. Animal Sciences, 38(4), 447-453.
Campos, G. de los et al. (2009). Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics, 182(1), 375-385.
Croiseau, P., Guillaume, F., & Fritz, S. (2012). Comparison of Genomic Selection Approaches in Brown Swiss within Intergenomics. Interbull Bulletin, 46, 127-132.
González-Recio, O., & Forni, S. (2011). Genome-wide prediction of discrete traits using bayesian regressions and machine learning. Genetics Selection Evolution, 43(7), 1-12.
Grattapaglia, D., & Resende, M. D. V. (2011). Genomic selection in forest tree breeding. Tree Genetics & Genomes, 7, 241-255.
Grosse-Brinkhaus, C., Bergfelder, S., & Tholen, E. (2014). Genome wide association analysis of the QTL MAS 2012 data investigating pleiotropy. BMC Proceedings, 8(suppl 5), 1-5.
Habier, D., Fernando, R. L., Kizilkaya, K., & Garrick, D. J. (2011). Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics, 12, 1-12.
Hsu, J. C. (1996). Multiple comparisons: theory and methods. London: Chapman and Hall.
Kendall, M. G., & Babington Smith, B. (1939). The problem of m rankings. The Annals of Mathematical Statistics, 10(3), 275-287.
Kizilkaya, K., Fernando, R. L., & Garrick, D. J. (2014). Reduction in accuracy of genomic prediction for ordered categorical data compared to continuous observations. Genetics Selection Evolution, 46(37), 1-13.
Mendiburu, F. (2019). Agricolae: Statistical Procedures for Agricultural Research, R package version 1.3-1. Available at: ˂https://cran.r-project.org/web/packages/agricolae/index.html˃. Accessed on: 16/01/2020.
Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819-1829.
Montesinos-López, O. A., Montesinos-López, A., Pérez-Rodríguez, P., Campos, G. de los, Eskridge, K., & Crossa, J. (2015). Threshold Models for Genome-Enabled Prediction of Ordinal Categorical Traits in Plant Breeding. Genomic selection, 5, 291-300.
Park, T., & Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical Association, 103(482), 681-686.
Pérez, P., & Campos, G. de los (2014). Genome-Wide Regression and Prediction with the BGLR Statistical Package. Genomic selection, 198, 483-495.
R Core Team. (2018). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available at: ˂https://www.r-project.org/˃. Accessed on: 02/07/2018.
Resende Junior, M. F. R. et al. (2012). Accuracy of Genomic Selection Methods in a Standard Data Set of Loblolly Pine (Pinus taeda L.). Genomic selection, 190, 1503-1510.
Signorell, A. et al. (2019) DescTools: Tools for Descriptive Statistics, R package version 0.99.31. Available at: ˂https://cran.r-project.org/web/packages/DescTools/index.html˃. Accessed on: 16/01/2020.
Usai, M. G., Gaspa, G., Macciotta, N. P. P., Carta, A., & Casu, S. (2014). XVI th QTLMAS: simulated data set and comparative analysis of submitted results for QTL mapping and genomic evaluation. BMC Proceedings, 8, 1-9.
Wang, C.L. et al. (2013). Bayesian methods for estimating GEBVs of threshold traits. Heredity, 110, 213-219.
Wang, C., Li, X., Qian, R., Su, G., Zhang, Q., & Ding, X. (2017). Bayesian methods for jointly estimating genomic breeding values of one continuous and one threshold trait. Plos one, 12(4), 1-18.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).