Descoberta de regras de associação com algoritmo Tertius
DOI :
https://doi.org/10.33837/msj.v1i7.334Mots-clés :
Mineração de Dados, Regras de Associação, Tertius.Résumé
O trabalho descreve os experimentos do processo de definição das regras de associação com base nas regras do desafio PhysioNet de 2012. O desafio disponibilizou uma base com 4000 pacientes com informações das últimas 48 horas de permanência em uma UTI. Na descoberta das regras de associação, agrupamos os registros por paciente e calculamos a média aritmética de cada atributo temporal. Para realizar os treinamentos utilizamos somente as primeiras 24 horas agrupadas de 6 em 6 horas. Utilizamos o algoritmo Tertius para gerar automaticamente as regras em conjunto com a ferramenta Weka.
Références
ANDRADE, A. A. d. Desenvolvimento de sistema especialista com operacionalidade de aprendizado para operar em tempo real com sistemas industriais automatizados. PhD thesis, Escola Politécnica - USP, São Paulo, Brasil, abr 2007.
BERA, D.; NAYAK, M. Mortality risk assessment for icu patients using logistic regression. In: Computing in Cardiology (CinC), 2012, p. 493–496, 2012.
BOSNJAK, A.; MONTILLA, G. Predicting mortality of ICU patients using statistics of physiological variables and support vector machines. In: Computing in Cardiology (CinC), 2012, p. 481–484, 2012.
CITI, L.; BARBIERI, R. Physionet 2012 challenge: Predicting mortality of icu patients using a cascaded svm-glm paradigm. In: Computing in Cardiology (CinC), 2012, p. 257–260, 2012.
FLACH, P. A.; LACHICHE, N. Confirmation-guided discovery of first-order rules with tertius. Machine Learning, 42:61–95, 1999.
GOLDBERGER, A. L.; AMARAL, L. A. N.; GLASS, L.; HAUSDORFF, J. M.; IVANOV, P. C.; MARK, R. G.; MIETUS, J. E.; MOODY, G. B.; PENG, C.-K.; STANLEY, H. E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 101(23):e215–e220, 2000 (June 13). Circulation Electronic Pages: http://circ.ahajournals.org/cgi/content/full/101/23/e215 PMID:1085218; doi: 10.1161/01.CIR.101.23.e215.
HALL, M.; FRANK, E.; HOLMES, G.; PFAHRINGER, B.; REUTEMANN, P.; Witten, I. H. The weka data mining software: an update. SIGKDD Explor. Newsl., 11(1):10–18, Nov. 2009.
HAMILTON, S.; HAMILTON, J. Predicting in-hospital-death and mortality percentage using logistic regression. In: Computing in Cardiology (CinC), 2012, p. 489–492, 2012.
JOHNSON, A.; DUNKLEY, N.; MAYAUD, L.; TSANAS, A.; Kramer, A.; Clifford, G. Patient specific predictions in the intensive care unit using a bayesian ensemble. In: Computing in Cardiology (CinC), 2012, p. 249–252, 2012.
LEE, C.; ARZENO, N.; HO, J.; VIKALO, H.; GHOSH, J. An imputation-enhanced algorithm for icu mortality prediction. In: Computing in Cardiology (CinC), 2012, p. 253–256, 2012.
MACAS, M.; KUZILEK, J.; ODSTRCILIK, T.; HUPTYCH, M. Linear bayes classification for mortality prediction. In: Computing in Cardiology (CinC), 2012, p. 473–476, 2012.
MCMILLAN, S.; CHIA, C.-C.; VAN ESBROECK, A.; RUBINFELD, I.; SYED, Z. Icu mortality prediction using time series motifs. In: Computing in Cardiology (CinC), 2012, p. 265– 268, 2012.
POLLARD, T.; HARRA, L.; WILLIAMS, D.; HARRIS, S.; MARTINEZ, D.; FONG, K. 2012 physionet challenge: An artificial neural network to predict mortality in icu patients and application of solar physics analysis methods. In: Computing in Cardiology (CinC), 2012, p. 485–488, 2012.
SAEED, M.; VILLARROEL, M.; REISNER, A.; CLIFFORD, G.; LEHMAN, L.; MOODLY, G.; HELDT, T.; KYAW, T.; MOODY, B.; MARK, R. Multiparameter intelligent monitoring in intensive care ii (mimic ii): A public-acess intensive care unit database. Critical Care Medicine, 2011.
SCHEFFER, T. Finding association rules that trade support optimally against confidence. Intell. Data Anal., 9(4):381–395, July 2005.
XIA, H.; DALEY, B.; PETRIE, A.; ZHAO, X. A neural network model for mortality prediction in icu. In: Computing in Cardiology (CinC), 2012, p. 261–264, 2012.
XU, J.; LI, D.; ZHANG, Y.; DJULOVIC, A.; LI, Y.; ZENG, Y. Cinc challenge: Cluster analysis of multi-granular time-series data for mortality rate prediction. In: Computing in Cardiology (CinC), 2012, p. 497–500, 2012.
Téléchargements
Publiée
Comment citer
Numéro
Rubrique
Licence
Authors who publish in this journal agree to the following terms:
a) The Authors retain the copyright and grant the journal the right to first publication, with the work simultaneously licensed under the Creative Commons Attribution License that allows the sharing of the work with acknowledgment of authorship and initial publication in this journal.
b) Authors are authorized to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg, publishing in institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.
c) Authors are allowed and encouraged to publish and distribute their work online (eg in institutional repositories or on their personal page) at any point before or during the editorial process, as this can generate productive changes, as well as increase impact and citation of the published work.