Tomato breeding for disease resistance
DOI:
https://doi.org/10.33837/msj.v3i3.1287Palabras clave:
Solanum lycopersicum, genetic resistance, pathogens, tomato cropResumen
In the genetic breeding of tomatoes, not only productivity, but also factors related to fruit quality and pest and disease management are taken into account. In this context, diseases stand out, since they are the main bottlenecks for successful cultivation. Currently, the search for more sustainable crops has demanded from producers’ alternatives to disease control to reduce the use of pesticides. Among the diseases that most reduce tomato production in Brazil, whether for table or industry, we can mention late blight, black spot, fusarium wilt, viruses, bacterial and nematode diseases. Genetic resistance, obtained by genetic breeding programs, is one of the best tools to deal with diseases to depend less on pesticides. Thus, this review aims to provide an overview of tomato breeding programs in terms of resistance to the main diseases that affect this crop.
Citas
Abad, P.; Favery, B.; Rosso, M.N.; Castagnone-Sereno, P. 2003 Root-knot nematode parasitism and host response: Molecular basis of a sophisticated interaction. Molecular Plant Pathology 4: 217–224.
Abreu, F.F.B.; Silva, D.J.H.; Cruz, C.D.; Mizubuti, E.S.G. 2008. Inheritance of resistance to Phytophththora infestans (Peronnosporales, Pythiaceae) in a new source of resistance in tomato (Solanum sp. (formerly Lycopersicon sp.), Solanales, Solanaceae). Genetics and Molecular Biology 31: 493-497.
Agrios, G.N. 2005. Plant pathology. 5th ed. New York: Academic, 922 p.
Aguilera, J.G.; Hurtado, F.D.; Ramos Sobrinho, R.; Almeida, V. de S.; Tavares, S.S.; Nick, C.; et al. 2014. Response of tomato (Solanum L. section Lycopersicon Mill.) germplasm to begomovirus inoculation under controlled and field conditions. Genetic Resource Crop Evolution 61:435-450.
Ajilogba, C.F.; Babalola, O.O. 2013. Integrated management strategies for tomato Fusarium wilt. Biocontrol Science 18: 117-127.
Alexander, L.J.; Tucker, C.M. 1945. Physiologic specialization in the tomato wilt fungus Fusarium oxysporum f. sp. lycopersici. Journal of Agricultural Research 70: 303-313.
Ammiraju, J.S.S.; Veremis, J.C.; Huang, X.; Roberts, P.A.; Kaloshian, I. 2003. The heat-stable, root-knot nematode-resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theorical and Applied Genetics 106: 478-484.
Batista, D.C.; Lima, M.A.; Haddad, F.; Maffia, L.A.; Mizubuti, E.S.G. 2006. Validation of decision support systems for tomato early blight and potato late blight, under Brazilian conditions. Crop Protection 25: 664-670.
Becker, W.F.; Wamser, A.F.; Feltrim, A.L.; Suzuki, A.; Santos, J.P.; Valmorbida, J.; Hahn, L.; Marcuzzo, L.L; Mueller, S. 2016. Sistema de produção integrada para o tomate tutorado em Santa Catarina. Florianópolis, SC: Epagri, 149p.
Bedford, I.D.; Briddon, R.W.; Brown, J.K.; Rosell, R.C.; Markham, P.G. 1994. Geminivirus transmission and biological characterization of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Annals of Applied Biology 125: 311-325.
Bhattarai, K.; Louws, F.J.; Williamson, J.D.; Panthee, D.R. 2017. Resistance to Xanthomonas perforans race T4 causing bacterial spot in tomato breeding lines. Plant Pathology 66: 1103-1109.
Booth, C. 1971. The Genus Fusarium. Kew: England. Common-wealth Mycological Institute, 237p.
Bosco, L.; Heldwein, A.; Lucas, D. 2009. Sistema de previsão de ocorrência de requeima em clones de batata suscetíveis e resistentes. Ciência rural 39: 1024-1031.
Brouwer, D.J.; St. Clair, D.A. 2004. Fine mapping of three quantitative trait loci for late blight resistance in tomato using near isogenic lines (NILs) and sub-NILs. Theoretical and Applied Genetics 108: 628-638.
Brouwer, D.J.; Jones, E.S.; Clair, D.A.S. 2004. QTL analysis of quantitative resistance to Phytophthora infestans (late blight) in tomato and comparisons with potato. Genome 47: 475–492.
Brown, J.K. 1994. Current status of Bemisia tabaci as a plant pest and virus vector in agroecosystems worldwide. FAO Plant Protection Bulletin 42: 3-32.
Carrer Filho, R.; Dias, V.D.; Oliveira, R.M.; Dianese, E.C.; Boiteux, L.S. Cunha, M.G. 2016. Detecção simultânea de fatores de resistência à murcha de fusário do tomateiro por meio de PCR multiplex. Pesquisa Agropecuária Brasileira 51: 925-932.
Carrer Filho, R.; Oliveira, R.M.; Dias, V.D.; Boiteux, L.S.; Dianese, E.C.; Cunha, M.G. 2015. Fontes de resistência múltipla à murcha de fusário em tomateiro. Pesquisa Agropecuária Brasileira 50: 1225-1231.
Catão, H.C.R.M.; Sales, N.L.P.; Azevedo, D.M.Q.; Flávio, N.S.D.S.; Menezes, J.B.C.; Barbosa, L.V.; Martinez, R.A.S. 2013. Fungicides and alternative products in the mycelial growth and germination control of Alternaria tomatophila. Idesia 31: 21-28.
Catão, H.C.R.; Sales, N.L.P.; Menezes. J.B.C.; Caixeta, F.; Costa, C.A. 2017. Productive potential of the cherry tomato genotype group before infection by Alternaria tomatophila. Revista Caatinga 30: 296-302.
Chan, Y.-L.; He, Y.; Hsiao, T.-T.; Wang, C.-J.; Tian, Z.; Yeh, K.-W. 2015. Pyramiding taro cystatin and fungal chitinase genes driven by a synthetic promoter enhances resistance in tomato to root-knot nematode Meloidogyne incognita. Plant Science 231: 74-81.
Chen, C.-H.; Sheu, Z.-M.; Wang, T.-C. 2008. Host Specificity and Tomato-Related Race Composition of Phytophthora infestans Isolates in Taiwan During 2004 and 2005. Plant Disease 92: 751-755.
Dianese, E.C.; Fonseca, M.E.N.; Inoue-Nagata, A.K.; Resende, R.O.; Boiteux, L.S. 2011. Search in Solanum (section Lycopersicon) germplasm for sources of broad-spectrum resistance to four Tospovirus species. Euphytica 180: 307-319.
Dianese, E.C.; Resende, R.O.; Inoue-Nagata, A.K. 2008. Alta incidência de Pepper yellow mosaic virus em tomateiro em região produtora no Distrito Federal. Tropical Plant Pathology 33: 67-68.
El-Sappah, A.H.; Islam, M.M.; El-Awady, H.H.; Yan, S.; Qi, S.; Liu, J.; Gheng, G.; Liang, Y. 2019. Tomato natural resistance genes in controlling the root-knot nematode. Genes 10: 1-19.
Embrapa Hortaliças. 2013. BRS-Imigrante: híbrido tipo salada tolerante à begomovírus e Fusarium raça 3. Available from: https://www.embrapa.br/en/busca-de-publicacoes/-/publicacao/982292/brs-imigrante-hibrido-tipo-salada-tolerante-a-begomovirus-e-fusarium-raca-3. Accessed on 10/04/2019.
Faria, J.C.; Bezerra, I.C.; Zerbini, F.M.; Ribeiro, S.G.; Lima, M.F. 2000. Situação atual das geminiviroses no Brasil. Fitopatologia Brasileira 25: 125-137.
Fiorini, C.V.A.; Silva, D.J.H.; Silva, F.F.; Mizubuti, E.S.G.; Alves, D.P.; Cardoso, T.S. 2010. Agrupamento de curvas de progresso de requeima, em tomateiro originado de cruzamento interespecífico. Pesquisa Agropecuária Brasileira 45: 1095-1101.
Foolad, M.R. 2007. Genome mapping and molecular breeding of tomato. International Journal of Plant Genomics Doi:10.1155/2007/64358.
Foolad, M.R.; Sullenberg, T.; Ohlson, E.W.; Gugino, B.K. 2014. Response of accessions within tomato wild species, Solanum pimpinellifolium to late blight. Plant Breeding 133: 401-411.
Foolad, M.R.; Merk, H.L.; Ashrafi, H. 2008. Genetics, genomics and breeding of late blight and early blight resistance in tomato. Critical Reviews in Plant Sciences 27: 75-107.
Fry, W. 2008. Phytophthora infestans: the plant (and R gene) destroyer. Molecular plant pathology Doi.org/10.1111/j.1364-3703.2007.00465.x.
Fry, W.; Goodwin, S.B.; Dyer, A.T.; Matuszak, J.M.; Drenth, A.; Tooley, P.W.; et al. 1993. Historical and Recent Migrations of Phytophthora-Infestans - Chronology, Pathways, and Implications. Plant Disease 77: 653-661.
Fry, W.E.; Goodwin, S.B. 1997. Re-emergence of Potato and Tomato Late Blight in the United States. Plant Disease 81: 1349-1357.
Garcia-Cano, E.; Navas-Castillo, J.; Moriones, E.; Fernândez-Munõz, R. 2010. Resistance to Tomato chlorosis virus in wild tomato species that impair virus accumulation and disease symptom expression. Phytopathology 100: 582-592.
García-Cano, E.; Resende, R.O.; Fernández-Muñoz, R.; Moriones, E. 2006. Synergistic interaction between Tomato chlorosis virus and Tomato spotted wilt virus results in breakdown of resistance in tomato. Phytopathology 96: 1263-1269.
Gauffier, C.; Lebaron, C.; Moretti, A.; Constant, C.; Moquet, F.; Bonnet, G.; Caranta, C.; Gallois, J.L. 2016. A TILLING approach to generate broad-spectrum resistance to potyviruses in tomato is hampered by eIF4E gene redundancy. The Plant Journal 85: 717-729.
Gonzalez‐Cendales, Y.; Catanzariti, A.M.; Baker, B.; Mcgrath, D.J.; Jones, D.A. 2016. Identification of I‐7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes. Molecular Plant Pathology 17: 448-463.
Grattidge, R.; Obrien, R.G. 1982. Occurrence of a 3rd race of Fusarium-wilt of tomatoes in Queensland. Plant Disease 66: 165-166.
Grigolli, J.F.J.; Kubota, M.M.; Alves, D.P.; Rodrigues, G.B.; Cardoso, C.R.; Silva, D.J.H.; Mizubuti, E.S.G. 2011. Characterization of tomato accessions for resistance to early blight. Crop Breeding and Applied Biotechnology 11: 174 180.
Ho, J.-Y.; Weide, R.; Ma, H.M.; Wordragen, M.F.; Lambert, K.N.; Koornneef, M.; Zabel, P.; Williamson, V.M. 1992. The root-knot nematode resistance gene (Mi) in tomato: Construction of a molecular linkage map and identification of dominant cDNA markers in resistant genotypes. The Plant Journal 2: 971–982.
Jabeen, N.; Chaudhary, Z.; Gulfraz, M.; Rashid, H.; Mirza, B. 2015. Expression of rice chitinase gene in genetically engineered tomato confers enhanced resistance to fusarium wilt and early blight. Plant Pathology Journal 31: 252-258.
Jablonska, B.; Ammiraju, J.S.; Bhattarai, K.K.; Mantelin, S.; Martinez De Ilarduya, O.; Roberts, P.A.; Kaloshian, I. 2007. The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1. Plant Physiology 143: 1044-1054.
Jones, J.T.; Haegemen, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Palomares-Rius, J.E.; Wesemael, W.M.L.; Perry, R.N. 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology 14: 946-961.
Kemmitt, G. 2002. Early blight of potato and tomato. The Plant Health Instructor Doi: 10.1094/PHI-I-2002-0809-01.
Klarfeld, S.; Rubin, A.; Cohen, Y. 2009. Pathogenic Fitness of Oosporic Progeny Isolates of Phytophthora infestans on Late-Blight-Resistant Tomato Lines. Plant Disease 93: 947-953.
Kumar, S.; Srivastava, K. 2013. Screening of tomato genotypes against early blight (Alternaria solani) under field condition. The Bioscan 8: 189 193.
Laurindo, B.S.; Laurindo, R.D.F.; Azevedo, A.M.; Nick, C.; Silva. D.J.H.; Mizubuti, E.S.G. 2015. Selection of tomato accessions resistant to early blight by cluster analysis of disease progress curves. Pesquisa Agropecuária Brasileira 50: 106-114.
Laurindo, B.S.; Laurindo, R.D.F.; Nick, C.; Carneiro, P.C.S.; Mizubuti, E.S.G.; Silva, D.J.H. 2016. Potencial de hibridação entre acessos de tomateiro para pre melhoramento quanto à resistência à requeima. Pesquisa Agropecuária Brasileira 51: 27-34.
Li, G.; Huang, S.; Guo, S.; Li, Y.; Yang, Y.; Guo, Z.; et al. 2011. Cloning and characterization of r3b; members of the r3 superfamily of late blight resistance genes show sequence and functional divergence. Molecular plant-microbe interactions 24: 1132-1142.
Li, X.Q.; Wei, J.Z.; Tan, A.; Aroian, R.V. 2007. Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnology Journal 5: 455-464.
Lima, M.A.; Maffia, L.A.; Barreto, R.W.; Mizubuti, E.S.G. 2009. Phytophthora infestans in a subtropical region: survival on tomato debris, temporal dynamics of airborne sporangia and alternative hosts. Plant Pathology 58: 87-99.
Lourenço Jr., V.; Moya, A.; Gonzáles-Candelas, F.; Carbone, I.; Maffia, L.A.; Mizubuti, E.S.G. 2009. Molecular diversity and evolutionary processes of Alternaria solani in Brazil inferred using genealogical and coalescent approaches. Phytopathology 99: 765-774.
Ma, L. J.; Geiser, D.M.; Proctor, R.H.; Rooney, A.P.; O'Donnell, K.; Trail, F.; Gardiner, D.M.; Manners, J.M.; Kazan, K. 2013. Fusarium Pathogenomics. Annual Review Microbiology 67: 399 416.
Maciel-Zambolim, E.; Costa, H.; Capucho, A.; Ávila, A.C.; Inoue-Nagata, A.K.; Kitagima, E. 2004. Surto epidemiológico do vírus do mosaico amarelo do pimentão em tomateiro na região serrana do Espírito Santo. Fitopatologia Brasileira 29: 325-327.
Mcgovern, R. J. 2015. Management of tomato diseases caused by Fusarium oxysporum. Crop Protection 73: 78-92.
Nakaho, K.; Seo, S.; Ookawa, K.; Inoue, Y.; Ando, S.; Kanayama, Y.; Miyashita, S.; Takahashi, H. 2017. Involvement of a vascular hypersensitive response in quantitative resistance to Ralstonia solanacearum on tomato rootstock cultivar LS-89. Plant Pathology 66: 150-158.
National Institute of Food and Agriculture. Variability, Adaptation and Management of Nematodes Impacting Crop Production and Trade; University of California. 2019. (https://portal.nifa.usda.gov/web/crisprojectpages/1018832-variability-adaptation-and-management-of-nematodes-impacting-crop-production-and-trade.html). Accessed on 05/03/2020.
Nick, C.; Laurindo, B.S.; Almeida, V.S.; Laurindo, R.D.F.; Aguilera, J.G.; Silva, E.C.F.; Cruz, D.C.; Silva, D.J.H. 2013. Seleção simultânea para qualidade do fruto e resistência à requeima em progênies de tomateiro. Pesquisa Agropecuária Brasileira 48: 59-65.
Nowicki, M.; Foolad, M.R.; Nowakowska, M.; Kozik, E.U. 2012. Potato and tomato late blight caused by Phytophthora infestans: an overview of pathology and resistance breeding. Plant Disease 96: 4 17.
Nowicki, M.; Kozik, E.U.; Foolad, M. 2013. Late Blight of Tomato. Translational Genomics of Crop Breeding 1: 241-265.
Ohlson, E.W.; Foolad, M.R. 2016. Genetic analysis of resistance to tomato late blight in Solanum pimpinellifolium accession PI 163245. Plant Breeding 398: 391-398.
Panthee, D.R.; Gardner, R.G. 2010. ‘Mountain Merit’: a late blight-resistant large-fruited tomato hybrid. HortScience 45: 1547-1548.
Park, T.-H.; Vleeshowers, V.G.A.A.; Hutten, R.C.B.; van Eck, H.J.; van der Vossen, E.; Jacobsen, E.; Visser, R.G.F. 2005. High-resolution mapping and analysis of the resistance locus rpi-abpt against Phytophthora infestans in potato. Molecular Breeding 16: 33-43.
Potnis, N.; Timilsina, S.; Strayer, A.; Shantharaj, D.; Jeri, D.; Barak, J.D.; Paret, M.L.; Vallad, G.E.; Jones, J.B. 2015. Bacterial spot of tomato and pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Molecular Plant Pathology 16: 907-920.
Pinheiro, J. B.; Pereira, R. B.; Suinaga, F. A. 2014. Manejo de nematoides na cultura do tomate. Embrapa Circular Técnica.
Reis, A.; Giordano, L.B.; Lopes, C.A.; Boiteux, L. 2004. Novel sources of multiple resistance to three races of Fusarium oxysporum f. sp. lycopersici in Lycopersicon germplasm. Crop Breeding and Applied Biotechnology 4: 495-502.
Rodrigues, T.T.M.S.; Berbee, M.L.; Simmons, E.G.; Cardoso, C.R.; Reis, A.; Maffia, L.A.; Mizubuti, E.S.G. 2010. First report of Alternaria tomatophila and A. grandis causing early blight on tomato and potato in Brazil. New disease Reports 22: 28.
Rosa, J.M.O; Westerich, J.N.; Wilcken, S.R.S. 2014. Reação de genótipos e híbridos de tomateiro à Meloidogyne enterolobii. Ciência Rural 44: 1166-1171.
Rotem, J. 1994. The genus Alternaria biology, epidemiology, and pathogenicity. APS Press St. Paul 326p.
Ruffel, S.; Gallois, J.L.; Lesage, M.L.; Caranta C. 2005. The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Mol Genet Genomics 274: 346–353.
Salustiano, M.E.; Vale, F.X.R.; Zambolim, L.; Fontes, P.C.R. 2006. Tomato blight management in low temperature periods. Summa Phytopathologica 32: 353-359.
Santos Júnior, W.N.; Carvalho, M.R.M.; Cabral, C.S.; Reis, A. 2009. Selection of tomato hybrids and acessions for resistance to Fusarium oxysporum f. sp. lycopersici race 3. Boletim de Pesquisa e Desenvolvimento. Embrapa Hortaliças 19p.
Santos. J.R.M. 1997. Methodology for screening tomato for Fusarium wilt. Verticillium wilt. gray leaf spot. Early blight and Septoria leaf blight. In: International conference on the processing tomato; International symposium on tropical tomato diseases, Recife. Proceedings... Alexandria: ASHS: IPA 164-166.
Simmons, E.G. 2000. Alternaria themes and variations (244-286) species on Solanaceae. Mycotaxon 75: 1-115.
Smart, C.D.; Tanksley, S.D.; Mayton, H.; Fry, W.E. 2007. Resistance to Phytophthora infestans in Lycopersicon pennellii. Plant Disease 91: 1045-1049.
Souza, N.M.; Blind, A.D.; Silva Filho, D.F.; Rodrigues, H.S.; Noda, H. 2013. Avaliação de linhagens e cultivares de tomate resistentes à murcha bacteriana (Rasltonia solanacearum) desenvolvidas na amazonia. Enciclopédia Biosfera Centro Científico Conhecer 9: 400-410.
Thapa, S.P.; Miyao, E.M.; Davis, R.M.; Coaker, G. 2015. Identification of QTLs controlling resistance to Pseudomonas syringae pv. tomato race 1 strains from the wild tomato, Solanum habrochaites LA1777. Theorical and Applied Genetics 128:681-692.
Upadhyay, P.; Ganie, S.H.; Rai, A.; Singh, M.; Sinha, B. 2016. Identification of transcription factors in tomato, potentially related to early blight resistance at invasion in host tissue, using microarray expression profiling. South African Journal of Botany 106: 165-173.
Wang, Y.; Yang, W.; Zhang, W.; Han, Q.; Feng, M.; Shen, H. 2013. Mapping of a heat-stable gene for resistance to southern root-knot nematode in Solanum lycopersicum. Plant Molecular Biology Reports 31: 352-362.
Wittmann, J.; Brancato, C.; Berendzen, K.W.; Dreiseikelmann, B. 2016. Development of a tomato plant resistant to Clavibacter michiganensis using the endolysin gene of bacteriophage CMP1 as a transgene. Plant Pathology 65: 496-502.
Woudenberg, J.H.C.; Truter, M.; Groenewald, J.Z.; Crous, P.W. 2014. Large-spored Alternaria pathogens in section Porri disentangled. Studies in Mycology 79: 1-47.
Young, R.A; Kelly, J.D. 1996. Characterization of genetic resistence to Colletotrochum lindemuthianum in common bean differential cultivars. Plant Disease 80: 650-654.
Zerbini, F.; Maciel-Zambolim, E. 1999. A família Potyviridae–Parte I. Revisão Anual de Patologia de Plantas 7: 1-67.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 The author(s)
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Authors who publish in this journal agree to the following terms:
a) The Authors retain the copyright and grant the journal the right to first publication, with the work simultaneously licensed under the Creative Commons Attribution License that allows the sharing of the work with acknowledgment of authorship and initial publication in this journal.
b) Authors are authorized to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg, publishing in institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.
c) Authors are allowed and encouraged to publish and distribute their work online (eg in institutional repositories or on their personal page) at any point before or during the editorial process, as this can generate productive changes, as well as increase impact and citation of the published work.