In vitro antischistosomal activity of 2-aroyl-benzofuran derivatives against Schistosoma mansoni
DOI:
https://doi.org/10.33837/msj.v8i1.1720Keywords:
antischistosomal agents, aroyl-benzofuran, benzofuran, neglected tropical disease, Schistosoma mansoniAbstract
Five 2-aroylbenzofurans were synthesized by condensation between α-bromoacetone and an ortho-hydroxybenzaldehyde or ortho-hydroxy-acetophenone and evaluated for their in vitro antischistomal effects against adult Schistosoma mansoni worms. Below 200 µg/mL, none of the tested 2-aroylbenzofurans killed adult S. mansoni worms. On the other hand, at 200 µg/mL all the tested compounds reduced the motor activity of adult S. mansoni worms after treatment for 72 h. At 200 µg/mL, compound 1 was the only one to decrease the motor activity of 67% of the worms after incubation for 24 h. The methyl group at C6 and the nature of the substituent at ring A play important roles in the efficacy of 2-aroylbenzofurans in reducing the worm motor activity.
References
Ally, O., Kanoi, B. N., Ochola, L., Nyanjom, S. G., Shiluli, C., Misinzo, G. and Gitaka, J. (2024). Schistosomiasis diagnosis: Challenges and opportunities for elimination. PLoS Negl Trop Dis, 18, e0012282. https://www.doi.org/10.1371/journal.pntd.0012282.
Coskun, D., Ahmedzade, M. and Kirbag, S. (2011). 3-(Substituted Aryl)-1-benzofuranyl-2-propenones: Antimicrobial properties of some chalcones-type compounds and their 2-pyrazoline derivatives. E-J. Chem., 8, 1574-1581. https://www.doi.org/10.1155/2011/806854.
Dias, H. J., Patrocínio, A. B., Pagotti, M. C., Fukui, M. J., Rodrigues, V., Magalhães, L. G. and Crotti, A. E. M. (2018). Schistosomicidal activity of dihydrobenzofuran neolignans. Chem. Biodiv., 15, e1800134. https://www.doi.org/10.1002/cbdv.201800134.
Dias, H. J., Vieira, T. M., Crevelin, E. J., Donate, P. M., Vessecchi, R. and Crotti, A. E. M. (2017). Fragmentation of 2-aroylbenzofuran derivatives by electrospray ionization tandem mass spectrometry. J. Mass Spectrom., 52, 809-816. https://www.doi.org/10.1002/jms.4024.
Doenhoff, M. J., Cioli, D. and Utzinger, J. (2008). Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis. Curr. Opin. Infect. Dis., 21, 659-667. https://www.doi.org/10.1097/QCO.0b013e328318978f.
Getti, G. T., Aslam, S. N., Humber, D. P., Stevenson, P. C. and Cheke, R. A. (2006). The effect of cicerfuran, an arylbenzofuran from Cicer bijugum, and related benzofurans and stilbenes on Leishmania aethiopica, L. tropica and L. major. Planta Med., 72, 907-911. https://www.doi.org/10.1055/s-2006-947187
Gong, J., Hu, K., Shao, Y., Li, R., Zhang, Y., Hu, M. and Chen, J. (2020). Tandem addition/cyclization for synthesis of 2-aroyl benzofurans and 2-aroyl indoles by carbopalladation of nitriles. Org. Biomol. Chem., 18, 488-494. https://www.doi.org/10.1039/C9OB02408E.
Gündogdu-Karaburun, N., Benkli, K., Tunali, Y., Uçucu, Ü. and Demirayak, S. (2006). Synthesis and antifungal activities of some aryl [3-(imidazol-1-yl/triazol-1-ylmethyl) benzofuran-2-yl] ketoximes. Eur J Med Chem, 41, 651-656. https://www.doi.org/10.1016/j.ejmech.2005.12.013.
Hayakawa, I., Shiyoa, R., Agatsuma, T., Furukawa, H. and Sugano, Y. (2004). Thienopyridine and benzofuran derivatives as potent anti-tumor agents possessing different structure-activity relationships Bioorg. Med. Chem. Lett., 14, 3411-3414. https://www.doi.org/10.1016/j.bmcl.2004.04.079.
Jin, L.-P., Xie, Q., Huang, E.-F., Wang, L., Zhang, B.-Q., Hu, J.-S., Wan, D. C.-C., Jin, Z. and Hu, C. (2020). Design, synthesis, and biological activity of a novel series of benzofuran derivatives against oestrogen receptor-dependent breast cancer cell lines. Bioorg. Chem., 95, 103566. https://www.doi.org/https://doi.org/10.1016/j.bioorg.2020.103566.
Khatua, R., Sahoo, S. R., Sharma, S. and Sahu, S. (2020). Anisotropic charge transport and optoelectronic properties of wide band gap organic semiconductors based on biphenyl derivatives: A computational study. Synth Met, 267, 116474. https://www.doi.org/10.1016/j.synthmet.2020.116474.
Kuevi, D. N. O., Acquah, F. A., Amuquandoh, A. and Abbey, A. P. (2023). Challenges and proven recommendations of praziquantel formulation. J Clin Pharm Ther, 2023, 3976392. https://www.doi.org/https://doi.org/10.1155/2023/3976392
Lambert, A. A., Azzi, A., Lin, S.-X., Allaire, G., St-Gelais, K. P., Tremblay, M. J. and Gilbert, C. (2013). Dendritic cell immunoreceptor is a new target for antiAIDS drug development: identification of DCIR/HIV-1 inhibitors. PLoS One, 8, e67873. https://www.doi.org/10.1371/journal.pone.0067873.
Mahboobi, S., Sellmer, A., Höcher, H., Garhammer, C., Pongratz, H., Maier, T., Ciossek, T. and Beckers, T. (2007). 2-Aroylindoles and 2-aroylbenzofurans with N-hydroxyacrylamide substructures as a novel series of rationally designed histone deacetylase Inhibitors. J. Med. Chem., 50, 4405-4418. https://www.doi.org/10.1021/jm0703136.
Manneck, T., HaggenmÜLler, Y. and Keiser, J. (2010). Morphological effects and tegumental alterations induced by mefloquine on schistosomula and adult flukes of Schistosoma mansoni. Parasitology, 137, 85-98. https://www.doi.org/10.1017/S0031182009990965.
Moolman, C., van der Sluis, R., Beteck, R. M. and Legoabe, L. J. (2021). Exploration of benzofuran-based compounds as potent and selective Plasmodium falciparum glycogen synthase kinase-3 (PfGSK-3) inhibitors. Bioorg. Chem., 112, 104839. https://www.doi.org/10.1016/j.bioorg.2021.10483.
Nawaratna, S. S. K., McManus, D. P., Gasser, R. B., Brindley, P. J., Boyle, G. M., Rivera, V., Ranasinghe, S. L., Jones, M. K., You, H. and Gobert, G. N. (2020). Use of kinase inhibitors against schistosomes to improve and broaden praziquantel efficacy. Parasitology, 147, 1488-1498. https://www.doi.org/10.1017/S0031182020001250.
Ochola, E. A., Karanja, D. M. S. and Elliott, S. J. (2021). The impact of Neglected Tropical Diseases (NTDs) on health and wellbeing in sub-Saharan Africa (SSA): A case study of Kenya. PLoS Negl. Trop. Dis., 15, e0009131. https://www.doi.org/10.1371/journal.pntd.0009131.
Ono, M. and Saji, H. (2015). Recent advances in molecular imaging probes for β-amyloid plaques. Med. Chem. Comm., 6, 391-402. https://www.doi.org/10.1039/C4MD00365A.
Oter, O., Ertekin, K., Kirilmis, C., Koca, M. and Ahmedzade, M. (2007). Characterization of a newly synthesized fluorescent benzofuran derivative and usage as a selective fiber optic sensor for Fe(III). Sens. Actuators B Chem. , 122, 450-456. https://www.doi.org/1k0.1016/j.snb.2006.06.010.
Pagotti, M. C., Dias, H. J., Candido, A., Oliveira, T. A. S., Borges, A., Oliveira, N. D., Lopes, C. D., Orenha, R. P., Parreira, R. L. T., Crotti, A. E. M. and Magalhaes, L. G. (2023). Exploring synthetic dihydrobenzofuran and benzofuran neolignans as antiprotozoal agents against Trypanosoma cruzi. Pharmaceutics, 15, 754. https://www.doi.org/10.3390/pharmaceutics15030754.
Panday, A. K., Ali, D. and Choudhury, L. H. (2020). Cs2CO3-mediated rapid room-temperature synthesis of 3-amino-2-aroyl benzofurans and their copper-catalyzed N-arylation reactions. ACS Omega, 5, 3646-3660. https://www.doi.org/10.1021/acsomega.9b04169.
Paula, L. A., Santos, M. F. C., Pagotti, M. C., Veneziani, R. C. S., Bastos, J. K., Caffrey, C. R., Ambrósio, S. R. and Magalhães, L. G. (2022). Brazilian green propolis reduces worm burden and hepatic granuloma formation in a Schistosoma mansoni experimental murine model. Parasitol Res, 121, 775-780. https://www.doi.org/10.1007/s00436-021-07408-0.
Rádl, S., Hezký, P., Urbánková, J., Váchal, P. and Krejci, I. (2000). Synthesis and analgesic activity of some 1-benzofurans, 1-benzothiophenes and indoles. Collect. Czech. Chem. Comm., 65, 280-296.
Rangaswamy, J., Kumar, H. V., Harini, S. T. and Naik, N. (2012). Synthesis of benzofuran based 1,3,5-substituted pyrazole derivatives: As a new class of potent antioxidants and antimicrobials-A novel accost to amend biocompatibility. Bioorg. Med. Chem. Lett., 22, 4773-4777. https://www.doi.org/10.1016/j.bmcl.2012.05.061c.
Rangaswamy, J., Kumar, H. V., Harini, S. T. and Naika, N. (2014). An easy access to benzofurans via DBU induced condensation reaction of active 2-hydroxy acetophenones with phenacyl chlorides: a novel class of antioxidant agents. J. Heteroc. Chem., 52, 938-943. https://www.doi.org/10.1002/jhet.1971.
Rida, S. M., El-Hawash, S. A. M., Fahmy, H. T. Y., Hazzaa, A. A. and El-Meligy, M. M. M. (2006). Synthesis of novel benzofuran and related benzimidazole derivatives for evaluation of in vitro anti-HIV-1, anticancer and antimicrobial activities. Arch. Pharm. Res., 29, 826-833. https://www.doi.org/10.1007/bf02973901.
Souza, J. M., Vieira, T. M., Candido, A. C. B. B., Tezykja, D. Y., Rao, S., Albuquerque, S., Crotti, A. E. M., Siqueira-Neto, J. L. and Magalhães, L. G. (2021). In vitro anti-Trypanosoma cruzi activity enhacement of curcumin by its monoketone tetramethoxy analog diveratralaceton. Curr. Res. Parasitol. Vector Borne Dis., 1, e10003. https://www.doi.org/10.1016/j.crpvbd.2021.100031.
Summers, S., Bhattacharyya, T., Allan , F., Stothard, R., Edielu, A., Webster, B. L., Miles, M. A. and Bustinduy, A. L. (2022). A review of the genetic determinants of praziquantel resistance in Schistosoma mansoni: Is praziquantel and intestinal schistosomiasis a perfect match? Front Trop Dis 3, 933097. https://www.doi.org/10.3389/fitd.2022.933097.
Vasconcelos, M. A., Arruda, F. V. S., de Alencar, D. B., Saker-Sampaio, S., Albuquerque, M. R. J. R., dos Santos, H., Bandeira, P. N., Pessoa, O. D. L., Cavada, B. S., Henriques, M., Pereira, M. O. and Teixeira, E. H. (2014). Antibacterial and antioxidant activities of derriobtusone A isolated from Lonchocarpus obtusus. BioMed Res. Int., 2014, 248656. https://www.doi.org/10.1155/2014/248656.
Wang, L., Wu, X., Li, X., Zheng , X., Wang, F., Qi, Z., Huang, M. and Zou, Y. (2020). Imported schistosomiasis: A new public health challenge for China. Front Med, 7, 553487. https://www.doi.org/10.3389/fmed.2020.553487.
Xu, J., Dong, L.-L., Sun, H., Huang, P., Zhang, R.-Z., Wang, X.-Y., Sun, D.-Q. and Xia, C.-M. (2023). Small change, big difference: A promising praziquantel derivative designated P96 with broad-spectrum antischistosomal activity for chemotherapy of schistosomiasis japonica. PLoS Negl Trop Dis, 17, e0011215. https://www.doi.org/10.1371/journal.pntd.0011215.
Yang, L., Lei, H., Mi, C.-G., Liu, H., Zhou, T., Zhao, Y.-L., Lai, X.-Y., Li, Z.-C., Song, H. and Huang, W.-C. (2011). Synthesis, antiproliferative activities and in vitro biological evaluation of novel benzofuransulfonamide derivatives. Bioorg. Med. Chem. Lett., 21, 5389-5392. https://www.doi.org/10.1016/j.bmcl.2011.07.007.
Yu, Q.-F., Zhang, J.-Y., Sun, M.-T., Gu, M.-M., Zou, H.-Y., Webster, J. P. and Lu, D.-B. (2021). In vivo praziquantel efficacy of Schistosoma japonicum over time: A systematic review and meta-analysis. Acta Trop., 222, 2326-2329. https://www.doi.org/10.1016/j.actatropica.2021.106048
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tatiana Manzini Vieira, Herbert Júnior Dias, Daiane Albino Santos, Lizandra Guidi Magalhães, Antônio Eduardo Miller Crotti

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
a) The Authors retain the copyright and grant the journal the right to first publication, with the work simultaneously licensed under the Creative Commons Attribution License that allows the sharing of the work with acknowledgment of authorship and initial publication in this journal.
b) Authors are authorized to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg, publishing in institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.
c) Authors are allowed and encouraged to publish and distribute their work online (eg in institutional repositories or on their personal page) at any point before or during the editorial process, as this can generate productive changes, as well as increase impact and citation of the published work.