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ABSTRACT. Hypothesis tests, such as normality tests, are extensively employed in Agricultural 
Sciences to evaluate the normality assumption of the F test in the Analysis of Variance (ANOVA) 
when large sample sizes are unavailable. Nonetheless, researchers conducting these tests are 
exposed to the risk of committing type I or type II errors, with probabilities that are influenced by 
different experimental conditions. This study assesses the empirical type I error rate of hypothesis 
tests by considering the equality (inequality) of treatment means, the homogeneity (heterogeneity) 
of variances, and different numbers of repetitions per treatment. Applying Completely 
Randomized Designs (CRD), sub-scenarios were simulated for each experimental scenario, with 
10,000 iterations performed for each sub-scenario. Response variable values and experimental 
residuals were generated and subjected to appropriate tests. The results demonstrate that when the 
assumption of homogeneity of variances is violated, both the F and normality tests (excluding the 
Kolmogorov-Smirnov test) exhibit higher empirical type I error rates. Additionally, for normality 
tests, these error rates increase with the number of repetitions. Conversely, without such violations, 
the error rates remain stable and closely approximate the theoretical significance level for all 
analyzed hypothesis tests. 
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INTRODUCTION 

 
In Statistics, hypothesis tests involve the 

decision between the null hypothesis (H0) and the 
alternative hypothesis (Ha). According to Bussab and 
Morettin (2010), these tests rely on the distributions of 
the estimator (test statistic), assuming the truthfulness 
of H0. The applicability of hypothesis tests arises from 
the fact that decisions regarding the hypotheses are 
based on samples, thus conserving resources compared 
to assessing an entire population. However, these tests 
entail the possibility of two types of errors: type I error 
(rejecting H0 when it is true) and type II error (not 
rejecting H0 when it is false), with inversely 
complementary probabilities α and β, respectively, 
which are present in all hypothesis tests. In agricultural 
research, Piepho and Edmondson (2018) emphasize 
that understanding these errors is crucial for 
interpreting results and making informed decisions 
about crop varieties or farming practices, highlighting 

the practical implications of statistical theory in applied 
settings. 

Within the domain of Agricultural Sciences, 

hypothesis tests such as the F test of Analysis of 

Variance (ANOVA) and normality tests are frequently 

employed to verify assumptions and facilitate decision-

making. Acutis et al. (2012) underscored the prevalence 

of these tests and multiple comparison tests to evaluate 

differences among means. As exemplified by Henrique 

and Laca-Buendía (2010), who assessed a novel 

genotype and five cotton cultivars across various 

production response variables, these comparisons 

among means play a vital role in selecting the most 

suitable treatments. 
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Nevertheless, it is imperative to acknowledge 
the risk of errors, particularly type I errors, as an 
erroneous selection of the perceived optimal treatment 
may lead to significant economic losses. Taking into 
account the results obtained by Laca-Buendía (2010), 
Rodrigues et al. 2010) conducted a comparative analysis 
of type I error rates across various mean tests, utilizing 
significant outcomes derived from the ANOVA F test. 
These precautions are indispensable in minimizing 
additional costs and potential adverse impacts on 
farmers.  

Further emphasizing the importance of 

statistical accuracy in agricultural research, we must 

consider the broader implications in field trials. 

Researchers and farmers face challenges in accurately 

assessing the efficacy of different treatments, such as 

fertilizers, pesticides, or irrigation methods. As Piepho 

and Edmondson (2018) highlight, the challenge lies in 

drawing accurate conclusions from field experiments. 

Decision-making based on statistical models employed 

in these trials can result in type I error (falsely 

concluding a treatment effect when there is none) or 

type II error (failing to detect a genuine treatment 

effect). Hence, minimizing and comprehending the 

occurrence of these errors is of utmost importance. 

Factors such as small sample sizes, non-normal 

distributions, or variance heterogeneity can inflate 

Type I errors, potentially exacerbating the challenges in 

this context.  

Within this context, the F-test, one of the most 

widely utilized tests for decision-making (Mood, 1974; 

Casella and Berger, 2002; Searle and Gruber, 2016), 

requires that the model error follows a normal 

distribution. Moreover, an additional assumption is 

that the variances within each treatment are identical. 

Consequently, it is expected that if the assumptions of 

normality and homogeneity are not met, there might be 

some repercussions on the type I and type II error rates. 

Violations of these assumptions can distort p-values, 

leading to unreliable conclusions. This distortion occurs 

because the p-value is calculated based on the 

theoretical distribution of the test statistic under the 

null hypothesis. When the underlying assumptions are 

violated, the actual distribution of the test statistic may 

differ from the theoretical one, resulting in p-values that 

no longer accurately represent the probability of 

obtaining the observed results under the null 

hypothesis, compromising the integrity of the decision-

making process in agricultural insurance claims. 

Considering the importance of the classic 

ANOVA F-test and its assumptions, the main goal of 

this study was to assess the type I error rate under 

different experimental conditions, considering smaller 

sample sizes that are more representative of applied 

research, in contrast to what has been done in other 

studies. Additionally, the study aims were to evaluate 

the impact of homogeneity (or heterogeneity) of 

treatment variances, equality (or inequality) of their 

means, and the number of repetitions per treatment on 

type I error rates of the normality tests Shapiro-Wilk 

(SW), Anderson-Darling (AD), Cramér-von Mises 

(CVM), Kolmogorov-Smirnov (KS), and Lilliefors (LI). 

 

 
MATERIAL AND METHODS 
 

The study investigated the impact of violating 
key assumptions of the F-test and normality tests. To 
this end, four scenarios were simulated, representing 
possible values of a response variable (𝑦𝑖𝑗) in an 

experiment conducted based on a completely 
randomized design (CRD) with five treatments and k 
replications per treatment, as shown in Figure 1. The 
four scenarios were derived from the factorial 
combination of two primary factors, each with two 
levels: the equality or inequality of treatment means 
and the homogeneity or heterogeneity of variances 
across treatments. 

In the simulations, it was established that each 

treatment should follow a specific normal distribution. 

To achieve this, the four scenarios were distinguished 

based on the equality (inequality) of treatment means 

and the homogeneity (heterogeneity) of variances 

within treatments. The parameters for these distinct 

normal distributions used in the simulation are 

presented in Table 1. 

For each of the four scenarios (Table 1), sub-

scenarios were simulated by varying the number k of 

repetitions per treatment, such that k = 2, 4, 6, 8, and 10. 

Within each of these sub-scenarios, 10,000 iterations 

were simulated. For each iteration 𝑤 such that 𝑤 =

1;  2;  … ;  10,000, a set 𝑤 of 5k experimental residual 

values were obtained using Equation 1, where, �̂�𝑖𝑗𝑤 

represents the residual for the observed value 𝑦𝑖𝑗𝑤  of 

the response variable in iteration 𝑤 for replication 𝑗 of 

treatment 𝑖; �̂�
𝑖𝑤

 is the mean of the values of the response 

variable for treatment 𝑖 in iteration 𝑤 such that 

𝑤 = 1, 2, ⋯ , 10.000;  𝑖 = 1, ⋯ , 5;  𝑗 = 1, ⋯ , 𝑘  and 𝑘 =

2, 4, 6, 8, 10. 

 

�̂�𝑖𝑗𝑤 = 𝑦𝑖𝑗𝑤 − �̂�𝑖𝑤 (1) 

 
Subsequently, each set of residuals was 

evaluated by each one of the normality tests: Anderson-
Darling (AD), Cramér-von Mises (CVM), Kolmogorov-
Smirnov (KS), Lilliefors (LI), and Shapiro-Wilk (SW). 
These five tests were selected because they are 
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commonly used to assess normality across different 
sample sizes and are widely recognized in statistical 
literature. The p-value for each normality test in each 
iteration was recorded to calculate the empirical type I 

error rate (�̂�) of each normality test in each sub-
scenario, using Equation 2. 

 

�̂� =
𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑 − 𝒗𝒂𝒍𝒖𝒆𝒔 ≤ 𝟎. 𝟎𝟓

𝟏𝟎. 𝟎𝟎𝟎
 (2) 

 

Each set w of values of the response variable 

(not the residuals) for scenarios C1 and C2 sub-

scenarios was also subjected to the F test. Notably, only 

these two scenarios were subjected to the F test as they 

represent conditions where the null hypothesis (H0) of 

equality of means is true. This selection is crucial 

because type I error occurs under a true H0, which is 

the fundamental premise in this context. The F test 

evaluates the null hypothesis that all treatment means 

are equal against the alternative hypothesis that at least 

one mean differs. The p-value of the F test in each 

iteration of the sub-scenarios was recorded to calculate 

the empirical rate of type I error (�̂�), also using 

Equation 2. 

Based on the results, graphs were plotted to 

illustrate the relationship between the number of 

repetitions (k) per treatment and the empirical rates of 

type I error (�̂�) for each scenario. 

To assess the empirical rates of type I error for 

the normality tests and the F test, the level of empirical 

significance for each of these tests was classified as 

follows: If �̂� > 0.05, the test exhibited a high probability 

of type I error. If �̂� ≤ 0.05, the test exhibited a low 

probability of type I error. 

The chi-squared test was employed to evaluate 

the independence between the homogeneity 

(heterogeneity) of treatment variances and the 

empirical rates of type I error (�̂�). In cases where the chi-

squared test was significant, and the sample size was 

less than 40, with at least one class having an expected 

frequency of less than 5, the Yates correction was 

applied as per Fukunaga et al. (2018). 

 This correction was deemed appropriate in 

these instances as it helps to reduce the upward bias in 

the chi-squared statistic that can occur when dealing 

with small sample sizes or low expected frequencies, 

thereby providing a more conservative and accurate 

estimate of statistical significance. 

For the simulation iterations and the 

application of the normality and F tests, the software R, 

version 4.0.2 (R Core Team, 2020) was used. The 

simulations and statistical analyses were conducted 

using a suite of packages, including "tidyverse", "xlsx", 

"car", "GAD", "PMCMRplus", "DescTools", "outliers", 

"stats", "coin", "dplyr", and "nortest and "onewaytests". 

Furthermore, the graphical representations were 

generated using the "lattice" and "dplyr" packages. 

Figure 1 shows the organization chart of each 
simulated scenario pattern and sub-scenario. 

 
Figure 1. Simulated scenarios and sub-scenarios defining normal 
distributions and considering equality (inequality) of treatment 
means, homogeneity (heterogeneity) of treatment variances, and the 
number of replications per treatment (k=2, 4, 6, 8, 10). 
 

Table 1 shows the values of means and 
standard deviations for each scenario.

 

Table 1. Values of means and standard deviations were established to simulate scenarios considering different normal distributions. 

Distribution Mean Standard Deviation  
Scenario 

 𝜇
1

= 𝜇2 = 𝜇3 = 𝜇4 = 𝜇5 = 100 𝜎1 = 𝜎2 = 𝜎3 = 𝜎4 = 𝜎5 = 1 C1 

Normal 𝜎1 = 1; 𝜎2 = 2; 𝜎3 = 3; 𝜎4 = 4; 𝜎5 = 5 C2 

 𝜇
1

= 100; 𝜇2 = 200; 𝜇
3

= 300; 𝜇4 = 400; 𝜇
5

= 500 𝜎1 = 𝜎2 = 𝜎3 = 𝜎4 = 𝜎5 = 1 C3 

 𝜎1 = 1; 𝜎2 = 2; 𝜎3 = 3; 𝜎4 = 4; 𝜎5 = 5 C4 

RESULTS AND DISCUSSION 
 

Figure 2 presents the results for the empirical 
type I error rates in the C1 (homogeneous variances) 

and C2 (heterogeneous variances) scenarios and their 
sub-scenarios. 

All normality tests exhibited satisfactory 

empirical type I error rates, that is �̂� ≤ 0.05 when the 

https://docs.google.com/document/d/1ORbaBPCcYFDbP0z_0xBtaGogQhF28Yaz/edit#heading=h.an2dqfklkgev
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means and standard deviations of the treatments were 
identical (Figure 2 (a)). For the AD, CVM, LI, and SW 

tests, the �̂� values were very close to the theoretical 
significance level (α = 0.05) for almost all numbers of 

replications (k) per treatment. The �̂� values for the KS 
test were visibly lower than the threshold of 0.05 and 
approached zero. These results confirm the 
conservative nature of the KS test, which was also 
reported by Torman et al. (2012), meaning that the KS 
test tends to reject the normality hypothesis less 
frequently than expected, resulting in fewer false 
positives. Conversely, Arnastauskaitė et al. (2021), 
Razali and Yap (2011), and Ogunleye et al. (2018) 
demonstrated that the Shapiro-Wilk (SW), Anderson-
Darling (AD), and Lilliefors (LI) tests tend to be more 
powerful and less conservative than the Kolmogorov-
Smirnov (KS) test in detecting deviations from 
normality. The higher power of SW, AD, and LI tests 
may be associated with their slightly higher empirical 
Type I error rates observed in the present study's C1 
scenario, albeit still within acceptable limits. The F test 
also exhibited (Figure 2 (a)) satisfactory results for the 
empirical type I error rate for all evaluated numbers of 
repetitions. 

However, these satisfactory �̂� values were not 
observed in the simulations of scenario C2 (Figure 2). 

The empirical type I error rates (�̂�) increased and 

exceeded the theoretical threshold of �̂� = 0.05 in most 
sub-scenarios with different standard deviations 
(Figure 2 (b)). Except for F and KS, for all tests the 
significance level increased as the number of 
replications per treatment (k) increased. This outcome 

suggested a possible dependence between �̂� and the 
homogeneity (or heterogeneity) of variances within 
treatments. Except for the KS test, this dependence was 
confirmed by a chi-squared test (Table 2) for all tests. 

Therefore, the empirical rates of type I error of 
the normality tests and the F test tend to be higher 
when the assumption of variances' homogeneity is 
false. It is worth noting that the KS test differed from 
the other normality tests as it did not exhibit a level of 
empirical significance higher than the theoretical 
threshold of 0.05 in any of the sub-scenarios. 
Consequently, it was impossible to use the chi-squared 
test for the KS test, as some cells of contingency chi-
squared table were null. However, such test was not 
needed because the KS test pattern was essentially the 

same in both C1 and C2 (Figure 2), that is, �̂� values 
close to zero. This result indicates that the 
heterogeneity of variances did not influence the 
empirical error rate of the KS normality test, which 
might be explained by the fact that the parameters of 

the theoretical distribution (𝜇, 𝜎2) are supposed to be 
known and completely specified while performing a 
KS test, making it behave like an exact test. 

Regarding the F test, the chi-squared test of 

independence (Table 2) revealed that when the within 
treatment variances were different, the empirical type 
I error rate increased. Therefore, there was a higher 
probability of rejecting the null hypothesis of equal 
treatment means when it should not be rejected. This 
result clearly shows the importance of the evaluation 
of the assumption of homogeneity of treatment 
variances before performing an Analysis of Variance 
(ANOVA). However, unlike the observed results for 

the normality tests, the increases in �̂� values for the F 
test in sub-scenarios of C2 (Figure 2) were relatively 
minor. 

It was also evaluated the effect of inequality of 
treatment means on the normality test �̂�  values 
(Figure 3). Considering the scenario C3 (unequal 
means and homogeneous within treatment variance) 
the empirical type I error rates remained practically 
stable for all numbers of repetitions evaluated in all 

sub-scenarios of C3, almost all �̂� values for the 
normality tests were either very close to 0.05 or lower. 
The results of the C3 sub-scenarios were very similar 
to those observed for sub-scenarios with equal means 
and homogeneous variances (C1 in Figure 2). 

However, when comparing the simulation 
results of the C3 sub-scenarios (distinct means and 
homogeneous variances) with those obtained for C4 
(distinct means and heterogeneous variances) in 

Figures 3 (a) and (b), respectively, the �̂� values 
increase, and this increase is proportional to the 
number of repetitions per treatment. To investigate the 
relationship between the empirical type I error rate 
and the homogeneity (or heterogeneity) of variances 
within treatments when the treatment means are 
different, the chi-squared test of independence was 
applied to each of the normality tests, considering the 
database of C3 and C4, which differ only in terms of 
the homogeneity or heterogeneity of treatment 
variances. The results of these chi-squared tests are 
presented in Table 3. 

The results in Table 3 show that, for all 
evaluated normality tests, there is a significant 
dependence relationship between the empirical type I 
error rates and the condition of homogeneity (or 
heterogeneity) of variances within treatments in the 
scenarios. These results allow us to conclude that when 
the variances are heterogeneous, the incidence of type 
I error significantly increases. 

It is noteworthy that the equality or inequality 
of means did not affect the simulation results 
(empirical type I error rates of normality tests), as 
evidenced by identical results observed for scenarios 
C1 and C3, and for C2 and C4, which differ only in 
treatment mean equality. This consistency explains the 
identical chi-squared test outcomes presented in 
Tables 2 and 3. Conversely, the alteration of variances 
(heterogeneous or homogeneous) had a significant 
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impact on the outcomes. For the simulation, a random 
seed was utilized to ensure reproducibility of results 
under the same conditions. Nevertheless, this 
approach did not prevent differences in type I error 
rates between scenarios C1 and C2 or between C3 and 
C4, where the variance conditions differed, further 
emphasizing the impact of variance heterogeneity on 
the results. 

Figure 2 shows the results of scenarios C1 and 

C2. These scenarios differ only in terms of the residual 
variances of the treatments (homogeneity in C1 and 
heterogeneity in C2). 

Figure 3 shows the results for scenarios C3 and C4. 
Although these two scenarios were simulated under 
inequality of means, their sub-scenarios differ 
regarding the residual variances of the treatments 
(homogeneity in C3 and heterogeneity in C4).  

 
Figure 2. Empirical type I error rate (�̂�) of the AD, CVM, KS, LI, SW, F tests as a function of the number of repetitions (k) per treatment in the sub-
scenarios of C1 (a) and C2 (b) and the theoretical significance level (α=0.05) adopted in all tests.

  

 
Figure 3. Empirical type I error rate (�̂�) of the normality tests (AD, CVM, KS, LI, and SW) as a function of the number of repetitions (k) per treatment 
in the sub-scenarios of scenarios C3 (a) and C4 (b) and the theoretical significance level (α=0.05) adopted in all tests. 

 

 

Table 2 shows the results for the chi-squared 
independence tests between empirical type I error 

rates (high if �̂�>0.05 and low if �̂�≤0.05) observed in the 

F, AD, KS, CVM, LI, and SW tests under the conditions 
of homogeneity (or heterogeneity) of treatment 
variances, using the database from scenarios C1 and 
C2.

https://docs.google.com/document/d/1ORbaBPCcYFDbP0z_0xBtaGogQhF28Yaz/edit#heading=h.an2dqfklkgev
https://docs.google.com/document/d/1ORbaBPCcYFDbP0z_0xBtaGogQhF28Yaz/edit#heading=h.an2dqfklkgev
https://docs.google.com/document/d/1ORbaBPCcYFDbP0z_0xBtaGogQhF28Yaz/edit#heading=h.wulbxmoaxj7l
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Table 2. Chi-squared tests of independence between empirical type I error rates (high if �̂�>0.05 and low if �̂�≤0.05) observed in the F, AD, KS, CVM, 
LI, and SW tests under the conditions of homogeneity (or heterogeneity) of treatment variances, using the database from scenarios C1 and C2. 
Values in bold indicate significance (p-value≤ 0.05). 

 

Test χ² p-value 

Anderson-Darling (AD)  6.40 0.01141 

Kolmogorov-Smirnov (KS) - - 

Cramér-von Mises (CVM) 3.75 0.05281 

Lilliefors (LI) 3.75 0.05281 

Shapiro-Wilk (SW) 3.75 0.05281 

F 3.75 0.05281 

Table 3 shows the results for the chi-squared 
independence tests between the empirical type I error 

rates (high if �̂�>0.05 and low if �̂�≤0.05) observed in the      

AD, KS, CVM, LI, and SW tests under the conditions 

of homogeneity (or heterogeneity) of treatment 
variances, using the database from scenarios C3 and 
C4.

 

Table 3. Chi-squared tests of independence between the empirical type I error rates (high if �̂�>0.05 and low if �̂�≤0.05) observed in the AD, KS, 
CVM, LI, and SW tests under the conditions of homogeneity (or heterogeneity) of treatment variances, using the database from scenarios C3 and 
C4. Values in bold indicate significance (p-value≤ 0.05). 

 

Test χ² p-value 

Anderson-Darling (AD) 6.40 0.01141 

Kolmogorov-Smirnov (KS) - - 

Cramér-von Mises (CVM) 3.75 0.05281 

Lilliefors (LI) 3.75 0.05281 

Shapiro-Wilk (SW) 3.75 0.05281 

 

The comparison of the results obtained in this 
work with those obtained in previous studies is crucial. 
The present study employs a novel approach by 
incorporating a defined experimental design, whereas 
most previous papers simulated data without such 
specification. This methodological distinction is critical 
as it allows for evaluating the effect of equality 
(inequality) of treatment means and homogeneity 
(heterogeneity) within treatment variances on 
empirical type I error rates of normality and F tests. 
Such evaluation was not feasible in previous studies 
due to their design limitations. Incorporating a defined 
experimental design enables a more comprehensive 
assessment of these tests under conditions that more 
closely approximate real experimental scenarios, 
thereby enhancing the applicability of the findings. 
Nevertheless, the results obtained in scenarios with 
treatment variance homogeneity (C1 and C3) are 
consistent with those observed by Ogunleye et al. 
(2018), Öztuna et al. (2006), Keskin (2006), and Torman 
et al. (2012). 

Ogunleye et al. (2018) found that, in general, 
the normality tests that exhibited empirical type I error 
rates closest to the theoretical level of 5% significance 
were the SW test, followed by the KS test and the AD 

test. However, the differences between their empirical 
type I error rates were not significant. Furthermore, 
they observed specific stability of empirical 
significance levels across sample sizes ranging from 10 
to 100, with 5,000 iterations for each. The present study 
employed a different methodology, utilizing a 
completely randomized design (CRD) experimental 
layout with 5 treatments and 2, 4, 6, 8, or 10 repetitions 
per treatment, resulting in total sample sizes of 10, 20, 
30, 40, or 50 observations. Additionally, 10,000 
iterations were used for each sample size to calculate 
the empirical type I error rate. Despite these 
methodological differences, similar conclusions to 
Ogunleye et al. (2018) were obtained in the present 
study for scenarios C1 and C3, representing conditions 
with homogeneous variances across treatments. This 
suggests that the findings regarding the performance 
of normality tests may be robust across different 
sample size configurations and iteration counts, 
specifically in scenarios with homogeneous variances. 
However, it is important to note that this conclusion 
cannot be extended to scenarios with heterogeneous 
variances among treatments.  

Öztuna et al. (2006) also concluded that there 
was not a significant difference between the type I 
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error rates of the LI and SW tests. They varied the 
sample size from 5 to 200 and found relatively stable 
rates, a behavior pattern very similar to what was 
observed in the present study for scenarios with 
identical treatment variances (C1 and C3). However, as 
their experiment was not linked to any specific 
experimental design, they could not evaluate the 
influence of homogeneity (or heterogeneity) of 
treatment variances since the simulations were 
conducted for only one level of a factor (i.e., only one 
treatment). The present study extends this line of 
inquiry by employing a multi-treatment approach 
within a completely randomized design. This design 
allows for examining normality test performance 
across different treatments and, crucially, enables 
assessing how variance homogeneity or heterogeneity 
among treatments affects these tests. This approach 
provides insights into the robustness of normality tests 
under more complex experimental conditions. It offers 
a more comprehensive understanding of their 
behavior in practical research scenarios where 
multiple treatments with varying degrees of variance 
homogeneity are common. 

Keskin (2006) reached similar conclusions to 
those mentioned above, as the type I error rate of the 
SW test was around 0.05 for all sample sizes ranging 
from 10 to 150. They conducted a total of 100,000 
iterations for each sample size. However, even with 
this large number of iterations, it was still impossible 
to assess the influence of different experimental 
conditions on the results. 

In contrast, this study was able to conclude 
that the heterogeneity of treatment variances has a 
significant effect on the significance level of almost all 
evaluated normality tests (AD, CVM, LI, and SW), both 
when the treatment means are equal (C2) and when the 
means are different (C4), as indicated by the results of 
the chi-squared tests for independence presented in 
Tables 2 and 3, respectively. These results confirm that 
when treatment variances are heterogeneous, type I 
error rates increase significantly, exceeding the 
threshold of 0.05, either if the treatment means are 
identical (C2) or different (C4). Under these conditions, 

the values of �̂� become increasingly higher as the 
number of repetitions per treatment increases. This 
inflation of type I error rates in heterogeneous variance 
scenarios might be attributed to the sensitivity of these 
tests' statistics to variance differences among 
treatments. For the Anderson-Darling (AD) and 
Cramér-von Mises (CVM) tests, which are based on the 
empirical distribution function, heterogeneous 
variances lead to more extreme values in the tails of the 
distribution, affecting the cumulative distribution 
function F(Yi) used in their test statistics. This results 
in larger deviations from the expected values under 
normality, inflating the test statistics. Similarly, for the 
Shapiro-Wilk (SW) test, variance heterogeneity 

distorts the relationship between the numerator and 
denominator of the test statistic, typically resulting in 
smaller W values that indicate greater deviation from 
normality. Consequently, these tests become more 
likely to reject the null hypothesis of normality when 
variances are heterogeneous, even if the underlying 
distribution is normal within each treatment. This 
sensitivity underscores the importance of considering 
the overall distribution shape and the variance 
structure when assessing normality in multi-treatment 
experimental designs. 

Regarding the F test, the results of the present 
study were similar to those obtained by Nguyen et al. 
(2019), Kulkarni and Patil (2021), and Kelter (2021). 
Overall, it was found that when treatment variances 
are homogeneous (C1), the F test is highly effective, 

exhibiting empirical type I error rates (�̂�) very close to 
the adopted theoretical significance level of 0.05. In 
contrast, when the treatment variances are 

heterogeneous (C2), the �̂� values exceeded 0.05 for all 
numbers of replications, indicating lower effectiveness 
of the F test. The influence of variance heterogeneity on 
the increase in type I error rates was further confirmed 
by significant results from the chi-squared tests for 
independence (Table 2). 

Consistent with these findings, Nguyen et al. 
(2019) concluded that under conditions of variance 
homogeneity, the F test yielded satisfactory results 
regarding type I error rates, with the majority of values 
below or equal to 0.05. However, under variance 
heterogeneity conditions, the F test's performance was 
unsatisfactory, as the calculated type I error rates 
exceeded 0.05, particularly as the disparity between 
treatment variances increased. In such situations, non-
parametric or semi-parametric methods, such as the 
Wilcox test proposed by Wilcox (1988) and Wilcox 
(1989), as well as the Welch test proposed by Welch 
(1951), exhibited better control over type I error rates 
compared to the F test. While the present study did not 
explicitly explore these alternative methods, the results 
suggest that their application might be beneficial in 
scenarios with high variance heterogeneity. However, 
it is important to note that the effectiveness of these 
non-parametric or semi-parametric approaches in the 
context of normality testing within multi-treatment 
experimental designs requires further investigation. 
Future research should focus on evaluating the 
performance of these alternative methods across 
various scenarios of variance heterogeneity and 
sample sizes to provide more comprehensive 
recommendations for practitioners dealing with 
heteroscedastic data in experimental settings. 

Kulkarni and Patil (2021) arrived at a more 
general conclusion that many conventional hypothesis 
tests, including the F test, exhibit high type I error rates 
under specific parametric conditions, particularly 
when comparing multiple groups with small sample 
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sizes and when there is variance heterogeneity 
between the groups. To address this issue, Kulkarni 
and Patil (2021) proposed alternative tests based on 
integrated ratios between likelihood functions with 
respect to problematic parameters, aiming to reduce 
type I error rates under the most critical conditions. 
This approach involves integrating the ratio of 
likelihood functions over the parameter space of 
nuisance parameters (such as variances) rather than 
using point estimates. By doing so, the method 
accounts for the uncertainty in these parameters, 
particularly in small sample sizes, and provides a more 
robust test statistic. This integration-based approach 
differs from the standard F test by incorporating the 
full range of possible parameter values, potentially 
offering improved performance in scenarios where 
traditional methods struggle due to variance 
heterogeneity or small sample sizes. While promising, 
the applicability and effectiveness of this method in the 
context of normality testing within multi-treatment 
experimental designs would require further 
investigation to determine its potential benefits over 
conventional approaches. 

Unlike the present study, Kelter (2021) 
investigated the behavior of hypothesis testing for two 
samples. He concluded that both frequentist 
hypothesis tests for two samples and their Bayesian 
counterparts have reduced type II errors and, 
consequently, increased type I errors as the sample size 
increased. Kelter (2021) also highlighted that 
frequentist tests exhibit higher type I error rates than 
their Bayesian counterparts. He also suggested that 
adopting a theoretical significance level lower than 
0.05 could be considered to achieve lower type I error 
rates. However, this would inevitably lead to increased 
type II error rates. 

The results from Kelter's (2021) study and the 
present work demonstrate that as sample sizes or 
numbers of replications per treatment increase, the 
samples from each treatment become more 
representative, and the variability within treatments 
increases. However, the experimental error variance 
estimator does not reflect this increase, as it is a 
weighted average that assigns the same weights to the 
variance within each treatment due to the assumption 
of variance homogeneity within treatments. 
Consequently, as this estimator is underestimated and 
appears in the denominator of the F test statistic, the 
values of F are higher than they should be, resulting in 
the incorrect rejection of the null hypothesis of equal 
means and an increased type I error rate. To mitigate 
this issue, several approaches could be considered: (1) 
using Welch's ANOVA, which does not assume equal 
variances; (2) applying variance-stabilizing 
transformations to the data before analysis; or (3) 
employing robust statistical methods that are less 
sensitive to violations of homogeneity assumptions. 

Additionally, mixed-effects models could account for 
both fixed and random effects in cases where the 
design allows, potentially providing a more nuanced 
analysis of the variance structure. Future research 
could focus on evaluating the effectiveness of these 
mitigation strategies in maintaining appropriate type I 
error rates across various scenarios of variance 
heterogeneity and sample sizes in the context of 
normality testing within multi-treatment experimental 
designs. 

 
CONCLUSIONS 
 

Kolmogorov-Smirnov test presents the lowest 

empirical rates �̂� of type I error in all scenarios. This 
superior performance is due to its conservative nature 
and lower sensitivity to variance heterogeneity 
compared to AD, CVM, and SW tests. While other tests 
are more affected by distortions in distribution tails 
and overall variance structure, the KS test's focus on 
maximum distribution differences provides greater 
robustness across various experimental conditions. 

When there is the homogeneity of residual 
variances of the treatments, all normality tests studied 

and the F test present empirical rates of type I error (�̂�) 
close to or lower than 0.05 and, therefore, satisfactory, 
unlike when these variances are heterogeneous. 

There is a significant dependence relationship 

between the empirical significance levels (�̂�) and the 
homogeneity condition (heterogeneity) of variances. 
Thus, when the standard deviations of the treatments 
are different, all studied hypothesis tests, except the 
KS, have a higher incidence of type I error.  
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