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ABSTRACT. This paper aims at evaluating the use of BLASSO and BayesCπ methods for the genomic 
prediction of ordinal traits, studying factors that influence the performance of the models, and if there is a 

difference in the ranking of individuals. Genotypic and phenotypic information from a simulated population 
of 4,100 animals, genotyped by 10k markers (QTL-MAS Workshop) were used. 3,000 animals were used for 

estimation of the predictive ability and bias accessed through 5-fold cross-validation with five repetitions. The 
other animals were used as a population of selection. One ANOVA and the Ryan-Einot-Gabriel-Welch test 

were performed to verify, respectively, which factors influence significantly the genomic prediction and if 

there is a statistical difference between the models. The results show that the four main factors s ignificantly (p 
< 0.05) affect the predictive ability of GEBVs (genomic estimated breeding values), and that heritability and 

the number of categories are the most influential factors. Only for ordinal trait 2, with a density of 9k, 
significant differences (p < 0.05) were observed between the predictive ability of the methods. In general, the 

BayesCπ method proved to be more efficient in the identification of relevant SNPs and in the ranking of 
individuals. Finally, there is a slight superiority of the BayesCπ method for the genomic prediction of ordinal 

traits. 
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INTRODUCTION 
 
Methods for genomic prediction have been extensively 
evaluated for continuous traits in real (Croiseau et al., 
2012, Resende Junior et al., 2012) and simulated (Atefi 
et al., 2016) data. However, it is in the interest of plants 
and animals breeding to determine the genetic 
variants associated with production, disease or 
resistance traits, which are not of a continuous and 
normally distributed nature (González-Recio & Forni, 
2011). 

It is known that several traits of economic 
interest and importance in animal and plant 
production are measured in an ordinal scale. Kizilkaya 
et al. (2014) commented that there are phenotypic 
traits of low heritability that are ordinal in nature, such 
as susceptibility, resistance to a disease and calving 
difficulty. In plant breeding, ordinal scores are also 

observed for disease resistance or susceptibility. 
Montesinos-López et al. (2015) used genomic wide 
selection techniques to predict resistance to gray leaf 
spot, measured on an ordinal scale, in maize lines, 
considering three environments. 

Methods for genomic prediction of categorical 
or ordinal traits have been proposed in recent times, as 
extensions of the methods used for continuous 
response. Wang et al. (2013) extended the Bayesian 
methods, BayesA and BayesB, proposed by 
Meuwissen et al. (2001), and the BayesCπ method 
proposed by Habier et al. (2011), for prediction of 
genomic estimated breeding values (GEBV) of 
threshold traits, which originated the BayesTA, 
BayesTB and BayesTCπ methods. The authors have 
shown that threshold methods are more accurate than 
their contemporaries when applied to predict genomic 
breeding values for threshold traits. Pérez & Campos 
(2014) proposed a class of models, called Bayesian 
generalized linear regression (BGLR), that allows 
modeling normal, binary, ordinal or censored traits. 
The approaches encompassed by BGLR, present the 
same standard theoretical model, differing in the a 
priori distribution assumed for the effect of the 
markers. 
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The accurate estimation of genomic breeding 
values is of extreme importance in breeding programs 
for the selection of genetically superior individuals 
and that they will act as progenitors in the following 
generations. According to Montesinos-Lopez et al. 
(2015), the performance of genomic prediction 
methods is affected by model choice, training 
population size, marker density, the heritability of the 
trait, the amplitude of linkage disequilibrium, among 
other factors. Although the influence of these factors 
on predictive accuracy for continuous traits has been 
extensively addressed in the literature, few studies 
have evaluated how these factors influence the 
genomic prediction of ordinal traits. 

This paper aims at evaluating the use of 
BLASSO and BayesCπ methods for the genomic 
prediction of ordinal traits. Specifically, the objective 
was to evaluate: which factors significantly influence 
the performance of the models; whether the predictive 
abilities of the models assessed in each scenario differ 
statistically by the Ryan – Einot – Gabriel – Welch test, 
and if there is a difference in the ranking of 
individuals by estimating the Kendall’s coefficient of 
concordance. 
 
MATERIAL AND METHODS 
 
In this study we used simulated data from the 16th 
QTL-MAS Workshop (Usai et al., 2014) composed of 
4,100 animals, genotyped by 10,000 biallelic SNPs 
(single nucleotide polymorphisms) markers 
distributed by five chromosomes. The database is 
made up of genotypic, phenotypic, genealogical 
information and true breeding values (TBV). Of the 

10,000 markers, 9,038 passed the quality control based 
on the lowest allele frequency of 5% and the call rate of 
5%. Random samples of markers were taken from the 
genotype set to obtain different marker densities (3k, 
4.5k, 6k, and 9k). Samples were taken sequentially, so 
all SNPs contained in the set of 6k markers are also 
part of the 9k, and so on.  

The data were simulated in five generations 
(G0, G1, G2, G3, and G4), so that each generation was 
formed by 20 males and 1,000 females, given that in 
the generation zero only for the males the genotypic 
information was registered. As the simulated 
phenotypic traits are relative to milk production, only 
females were phenotyped (G1, G2, and G3), which 
totaled 3,000 animals. In the fourth generation, 
comprised of 1,020 animals, of which 20 are males and 
1,000 are females, the animals were only genotyped, 
constituting themselves a population of selection (Usai 
et al., 2014). 

The phenotypic traits 1, 2 and 3 were 
simulated, respectively, with heritability equal to 0.35, 
0.35 and 0.50. These traits were expressed only by 
females, and correspond to milk and fat yields, and fat 
content (Usai et al., 2014). Only the traits 1 and 3 were 
used in this study, because they present greater 
differences between their heritabilities. The continuous 
responses of these traits were transformed into 
ordinals with two (1 or 2), three (1, 2 or 3) or four (1, 2, 
3 or 4) ordinal categories by dividing the continuous 
responses into quantiles (Figure 1). After the 
transformation, trait 1 and 3 were renamed as ordinal 
trait 1 and ordinal trait 2. 

 
 

 
Figure 1. Frequencies obtained for ordinal traits 1 and 2 after the categorization of the continuous response in two, three or four ordinal 
categories. 
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Phenotypic traits of ordinal nature can assume 
C possible values 𝑦𝑖 ∈ {1, … , 𝐶}, to 𝐶 = 2  have the 
binary case. For ordinal response, the probit link 
function is used to link each category to the linear 
predictor, by means of 𝑃(𝑦𝑖 = 𝐶) = 𝛷(𝜂𝑖 − 𝛾𝑖 ) − 𝛷(𝜂𝑖 −
𝛾𝐶 −1), where: 𝛷(⋅) is the cumulative normal 
distribution function, 𝜼 = 𝝁 + 𝑿𝜷 is the linear 
predictor and 𝛾𝑖  the threshold parameter. The probit 
link function is implemented via data augmentation, 
through the insertion of the latent variable 𝑙𝑖 = 𝜂𝑖 + 𝜀𝑖 
and the measurement model 𝑦𝑖 = 𝐶 if 𝛾𝐶−1 < 𝑙𝑖 < 𝛾𝐶  
(Pérez & Campos, 2014). 

The BayesCπ method proposed by Habier et 
al. (2011), has the characteristic of assuming that the 
effects of the markers have homogeneous variances. 
This method allows some markers to have zero effects, 
i.e., it excludes from the analyses marker that is not 
associated with any gene. The following distribution is 
assumed for the effect of the markers  

 

𝛽𝑗|𝜎𝑎
2 = {

0 with probability 𝜋

𝑁(0, 𝜎𝑎
2) with probability 1-𝜋

, 

 
with priori distributions given by 𝜎𝑎

2~𝜒−2(𝑣𝑎, 𝑆𝑎) and 
𝜋~ Beta(𝑏1,𝑏2), respectively for the additive genetic 
variance and for the proportion of markers with null 
effects. The hyper-parameters 𝑣𝑎, 𝑆𝑎, 𝑏1 and 𝑏2 were 
defined according to Pérez & Campos (2014). 

Initially proposed by Park & Casella (2008), 
the BLASSO (Bayesian Least Absolute Shrinkage and 
Selection Operator) method was adapted for use in 
genomic wide selection by Campos et al. (2009). Unlike 
the BayesCπ method, the BLASSO method assumes 
heterogeneity of variances for the effects of the 
markers, in addition, to perform the selection of 
variables indirectly through a strong shrinkage of 
effects close to zero. The method assumes that the 
effects of markers follow a double exponential 
distribution, or equivalently, a mixture of normal 
distributions. The priori distributions assumed by the 
model are given by: 
𝛽𝑗|𝜏𝛽𝑗

2 , 𝜎𝑒
2~𝑁(0, 𝜏𝛽𝑗

2 𝜎𝑒
2),𝜏𝛽𝑗

2 |𝜆~𝐸𝑥𝑝(0.5𝜆2), 𝜆2~ Gamma 

(𝑟, 𝑠) and 𝜎𝑒
2~𝜒−2(𝑣𝑒 ,𝑆𝑒), being the hyper-parameters 

r, s, 𝑣𝑒 and 𝑆𝑒, defined a priori according to Pérez & 
Campos (2014).  

The models were compared by 5 - fold cross-
validation with five repetitions, through their 
predictive ability (𝑟𝐺𝐸𝐵𝑉,𝑇𝐵𝑉) and bias (𝑏𝐺𝐸𝐵𝑉,𝑇𝐵𝑉). The 
predictive ability was obtained by the Pearson 
correlation between the genomic estimated breeding 
values (GEBV) and the true breeding values (TBV) 
given by the equation 𝑟𝐺𝐸𝐵𝑉,𝑇𝐵𝑉 = 𝑐𝑜𝑟(𝐺𝐸𝐵𝑉, 𝑇𝐵𝑉). The 
bias, obtained through the estimation of the slope 
coefficient, of the regression of true breeding values on 
genomic estimated breeding values, can be calculated 
by: 𝑏𝐺𝐸𝐵𝑉,𝑇𝐵𝑉 = 𝑐𝑜𝑣( 𝐺𝐸𝐵𝑉, 𝑇𝐵𝑉)/𝜎𝑇𝐵𝑉

2 . Since the 
genomic breeding values and true breeding values are 
not on the same scale, the estimated values for the bias 

were transformed to the original scale, using the scale 
change suggested by Wang et al. (2017), given by: 
𝑏𝐺𝐸𝐵𝑉,𝑇𝐵𝑉/𝜎𝑇, where 𝜎𝑇 is the true standard deviation 
threshold. 

In the cross-validation process, subjects were 
equally divided into five subgroups. Four of these 
groups were used as training populations, in which 
the genomic prediction models were adjusted and 
used to estimate the effects of the markers. The fifth 
group was used as a validation population, in this 
group were accessed the predictive ability and bias of 
the models. The procedure was repeated five times so 
that each of the five groups was part of the validation 
population only once. The cross-validation process 
was repeated five times, then mean values for 
predictive ability and bias were stored for each 
repetition.   

In order to evaluate the significance of the 
effects of the main factors, heritability, model, the 
number of categories and density of the markers, a 
factorial design was used, with five replications, 
consisting on forty-eight treatments. The assumptions 
of normality and homogeneity of variances were 
tested respectively by the Shapiro-Wilk and Bartlett 
tests. Then, the Ryan-Einot-Gabriel-Welch test (Hsu, 
1996) for multiple comparisons was applied at 5% 
probability.  

The methodologies cited above were used to 
predict GEBVs of individuals in the selection 
population. At this point, the independent validation 
process was adopted, considering the 3,000 genotyped 
and phenotyped females, to estimate the effects of the 
markers. Then, the estimated effects were used to 
predict genomic breeding values of the individuals 
belonging to the selection population, through the 

expression 𝐺𝐸𝐵𝑉𝑖 = 𝒙𝑖�̂�, where: 𝒙𝑖 represents the 

genotypic profile of individual i and �̂� the vector of 
estimated effects for the markers. Subsequently, 
individuals were organized in decreasing order of TBV 
(only the 300 largest TBVs were considered), this 
ranking was compared with the ranking suggested by 
each of the models through the Kendall’s coefficient of 
concordance (Kendall & Babington, 1939). 

All analyses were performed in software R (R 
Core Team, 2018), with the help of the BGLR (Pérez & 
Campos, 2014), DescTools (Signorell et al., 2019) and 
Agricolae (Mendiburu, 2019) packages. In Bayesian 
models, the Markov chains were run with 60,000 
cycles of the Gibbs sampler, with the first 15,000 cycles 
being discarded as burn-in and a thin of 3. 
 
RESULTS AND DISCUSSION 
 
The significance of the influence of factors, heritability, 
number of SNPs, model and number of categories, on 
the prediction of GEBVs was evaluated by means of an  
analysis of variance (ANOVA) (Table 1). The ANOVA 
results show that the four main factors and two 
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interactions (h² × nSNP and Model × nSNP) 
significantly (p < 0.05) affect the prediction ability of 
GEBVs. 

Among the factors evaluated, heritability is 
responsible for the greater variability in predictive 
ability (higher MS), followed by the number of 
categories, model used and the number of SNPs. 
Although the number of categories and the density of 
markers can be controlled by the researcher, 
heritability is inherent in the trait and cannot be easily 
controlled. Atefi et al. (2016) obtained results similar to 
those found in this study when evaluating the 
accuracy of parametric and semi-parametric models 
over the generations for continuous traits. According 
to the authors, the heritability and density of markers 
emerged as the most influential factors in the 
prediction accuracy of genomic estimated breeding 
values, also, a significant interaction (p < 0.05) between 
heritability and number of SNPs was observed.  

The values for predictive ability and bias, 
obtained through 5-fold cross-validation for the 
BLASSO and BayesCπ methods, varied according to 
the scenario evaluated, respectively, belonging to the 
ranges [0.639, 0.818] and [1.010, 1.497] (Table 2). When 
comparing the predictive ability of the methods within 
the number of categories, it was observed that in the 
binary case no significant differences between the 
models were observed for the two ordinal traits 
evaluated, considering the different marker densities. 
Already in the case of three or four categories, for the 
density of 9k, the BayesCπ method proved to be 
significantly superior to the BLASSO method for 
ordinal trait 2. In all the scenarios evaluated, 
consistently higher values for predictive ability were 
observed for the BayesCπ method, however, these 
values were not statistically different from those 
obtained for the BLASSO. Regarding the bias, we can 
see that in the binary case BayesCπ was the least 
biased method. For three or four categories, BLASSO 
showed the smallest bias most of the time. 

In the context of continuous and normally 
distributed responses variables, several papers 

explored these methods for prediction in real and 
simulated data. Croiseau et al. (2012) evaluated 
productive traits of bulls from the database composed 
of genomic information of bulls from five European 
countries, totaling 50 scenarios. The authors showed 
that, in most of the evaluated scenarios (28), the 
BayesCπ and BLASSO methods presented similar 
predictive ability. In 20 of these scenarios, the BayesCπ 
method presented a predictive ability superior to the 
BLASSO method. Resende Junior et al. (2012), 
comparing several methodologies regarding the 
accuracy of genomic prediction for 17 pine traits, 
corroborated with the results presented in this study, 
showing that for 11 of these traits, the BLASSO and 
BayesCπ methods presented the same predictive 
ability. The BayesCπ method was more accurate than 
BLASSO for only five traits.   

In most of the evaluated scenarios, the increase 
in heritability and the number of categories implied a 
significant increase in the predictive ability of the 
methods. In general, the gain in predictive ability, with 
an increase in heritability was more remarkable for the 
density of 9k. For two or three categories, increasing 
the predictive ability of BLASSO and BayesCπ 
methods with heritability variation was significant at 
almost all marker densities. Most of the time, the 
change in the number of categories of binary for three 
categories was accompanied by an increase in the 
predictive ability of the models, this increase was less 
noticeable with the change from three to four 
categories, this difference being not significant in none 
of the scenarios. The estimated values for the bias were 
lower for the trait with higher heritability. These 
results are corroborated by Wang et al. (2013), which 
showed that increases in the number of categories of 
the phenotypic variable and heritability are 
accompanied by increases in prediction accuracy of 
genomic breeding values, BayesA, BayesB and 
BayesCπ methods. 

 
 

 
Table 1. Output of Analysis of variance for the predictive ability, considering the four main factors: heritability (h²), model, number of categories 

(nCategories) and number of SNPs (nSNP), and their respective interactions. 

Source  of variation Degrees of Freedom Sum of Squares Mean Squares F-value p-value(1) 

ℎ2 1 0.149771 0.149771 251.0565 <0.0001 

   Model 1 0.039008 0.039008 65.3878 <0.0001 

nCategories 2 0.224710 0.112355 188.3366 <0.0001 
nSNP 3 0.011496 0.003832 6.4233 0.00036 

ℎ2× Model 1 0.002020 0.002020 3.3853 0.06732 
ℎ2× nCategories 2 0.000784 0.000392 0.6573 0.51943 

Model × nCategories 2 0.000744 0.000372 0.6236 0.53709 
ℎ2× nSNP 3 0.009952 0.003317 5.5609 0.00111 

Model × nSNP 3 0.006287 0.002096 3.5127 0.01629 

nCategories × nSNP 6 0.006451 0.001075 1.8022 0.10055 
ℎ2× Model × nCategories 2 0.001057 0.000528 0.8858 0.41405 

ℎ2× Model × nSNP 3 0.001824 0.000608 1.0191 0.38534 
ℎ2× nCategories × nSNP 6 0.000427 0.000071 0.1193 0.99401 

Model × nCategories × nSNP 6 0.002193 0.000366 0.6128 0.71992 
ℎ2×Model× nCategories × nSNP 6 0.000404 0.000067 0.1130 0.99483 

Residual 192 0.114540 0.000597 - - 
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Table 2. Mean values for the predictive ability and bias of the BayesCπ and BLASSO methods, estimated by 5-fold cross-validation in a 

simulated population, for the prediction of genomic breeding values associated to two ordinal traits, considering different S NP densities and 
phenotype categorization in two, three or four categories (1). 

nSNP Model Measure 
Binary Three categories Four categories 

ℎ1
2 ℎ2

2 ℎ1
2 ℎ2

2 ℎ1
2 ℎ2

2 

3k 

BL 
𝑟𝐺𝐵𝑉 ,𝑇𝐵𝑉  0.665Aa 0.700Aa 0.708Aa 0.760Ba 0.714Aa 0.766Ba 

𝑏𝐺𝐵𝑉,𝑇𝐵𝑉  1.458 1.038 1.452 1.053 1.455 1.048 

BC 
𝑟𝐺𝐵𝑉 ,𝑇𝐵𝑉  0.682Aa 0.725Aa 0.723Aa 0.780Ba 0.728Aa 0.784Ba 

𝑏𝐺𝐵𝑉,𝑇𝐵𝑉  1.420 1.052 1.497 1.097 1.491 1.084 

4.5k 

BL 
𝑟𝐺𝐵𝑉 ,𝑇𝐵𝑉  0.656Aa 0.691Aa 0.704Aa 0.757Ba 0.710Aa 0.763Ba 

𝑏𝐺𝐵𝑉,𝑇𝐵𝑉  1.419 1.030 1.446 1.042 1.461 1.048 

BC 
𝑟𝐺𝐵𝑉 ,𝑇𝐵𝑉  0.667Aa 0.729Ba 0.720Ba 0.786Ca 0.725Ba 0.792Ca 

𝑏𝐺𝐵𝑉,𝑇𝐵𝑉  1.403 1.032 1.471 1.049 1.467 1.063 

6k 

BL 
𝑟𝐺𝐵𝑉 ,𝑇𝐵𝑉  0.649Aa 0.671Aa 0.701Ba 0.738Ba 0.707Ba 0.743Ba 

𝑏𝐺𝐵𝑉,𝑇𝐵𝑉  1.419 1.045 1.450 1.040 1.446 1.064 

BC 
𝑟𝐺𝐵𝑉 ,𝑇𝐵𝑉  0.655Aa 0.689Aa 0.729Ba 0.754Ba 0.732Ba 0.758Ba 

𝑏𝐺𝐵𝑉,𝑇𝐵𝑉  1.369 1.01 1.468 1.045 1.457 1.051 

9k 

BL 
𝑟𝐺𝐵𝑉 ,𝑇𝐵𝑉  0.639Aa 0.680Aa 0.695Ba 0.753Ca 0.701Ba 0.760Ca 

𝑏𝐺𝐵𝑉,𝑇𝐵𝑉  1.443 1.039 1.484 1.047 1.431 1.042 

BC 
𝑟𝐺𝐵𝑉 ,𝑇𝐵𝑉  0.640Aa 0.728Ba 0.741Ba 0.814Cb 0.746Ba 0.818Cb 

𝑏𝐺𝐵𝑉,𝑇𝐵𝑉  1.408 1.012 1.471 1.022 1.458 1.043 
(1)nSNP,  number of SNPs;  GBV, genomic estimated breeding values; TBV, true breeding values; 𝑟𝐺𝐵𝑉 ,𝑇𝐵𝑉, predictive ability; 𝑏𝐺𝐵𝑉,𝑇𝐵𝑉 , bias; ℎ1

2, 

heritability of trait 1; ℎ2
2, heritability of trait 2; BL, BLASSO and BC, BayesCπ. Means followed by equal letters, uppercase in the lines and 

lowercase in the columns, do not differ by the Ryan–Einot–Gabriel–Welch multiple comparison test, at 5% probability. 
 

 

For continuous phenotypic traits, the 
predictive ability of the methods is expected to 
increase, or remain constant, with an increasing 
number of markers (Grattapaglia & Resende, 2011). As 
shown in Table 1, marker density is the main factor 
that least influences the predictive ability of genomic 
breeding values, so it is expected that few significant 
differences will be found. For the binary case, the 
increase of the density of the markers did not imply 
significant gains in the predictive ability, for the two 
ordinal traits. In the case of three or four categories, 
only for ordinal trait 2, a significant difference was 
observed with the change in the number of markers 
from 6k to 9k for the BayesCπ method. 

The estimated values for the effects of the 
markers were plotted for each of the methods, 
considering the density of 9k markers and the three 
forms of categorization of the phenotype for the two 
ordinal traits (Figure 2 and 3). Identifying markers 
with large effects is an important step in genomic 
selection, because, by the position of these markers, it 
is possible to check the existence of QTLs associated 
with the trait. When comparing the effects estimated 
for the markers by BLASSO and BayesCπ methods, it 
is noticed that in general, the position of the most 
relevant SNPs was similar for the two methods. 
 
 

               
 

Figure 2. Manhattan plot of the effects of markers, estimated by the BLASSO and BayesCπ methods, for the ordinal trait 1 categorized in two, 
three or four categories. 
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Figure 3. Manhattan plot of the effects of markers, estimated by the BLASSO and BayesCπ methods, for the ordinal trait 2 categorized in  two, 

three or four categories. 

 
For the ordinal trait 1, the methods identified 

an SNP of great effect in the initial position of 
chromosome four, in the three forms of categorization 
of the phenotype. The methods suggest the existence 
of two QTLs, one at the beginning and the other at the 
end of chromosome one, by the presence of SNPs with 
moderate effects. For the ordinal trait 2, SNPs of large 
effects were identified by both methods on 
chromosome 1. With the increase in the number of 
categories, the BLASSO method starts to identify a 
large-effect SNP located at the end of chromosome 2, 
SNP identified by BayesCπ with two categories. The 
initial part of chromosome 3 presented SNPs with 
large effects by the BayesCπ method, which suggests 
the existence of a QTL in this region. However, the 
effects estimated by BLASSO were small. These results 
are in agreement with those obtained by Grosse-
Brinkhaus et al. (2014) who, through Genomic Wide 
Association Studies (GWAs), identified QTLs for the 
two traits without categorizing the phenotype, in 
positions similar to those indicated in Figures 2 and 3.  

The positions of the QTLs are more evident 
when evaluating the effects estimated by the BayesCπ 
method, with three or four categories, than with the 
effects estimated by the BLASSO method. It can be 
seen from the graphs that the effect of shrinkage on 
effects estimates is greater for the BLASSO method 
than for the BayesCπ method. With the variation of the 

number of categories, it can be seen that the effects 
estimated by the methods for the two ordinal traits 
suffered a stronger shrinkage in the binary case, for 
three or four categories, few differences were observed 
in the magnitudes of the estimated effects. The 
BayesCπ method was more sensitive to changes in the 
number of categories than BLASSO. As the number of 
categories increases, it is noticed that markers with 
moderate and small effects are more affected by the 
shrinkage effect than markers with great effect.  

The estimated values for the Kendall’s 
coefficient of concordance (W), for the ranking of the 
individuals according to the methods and with the 
TBVs two to two, were significant and greater than 
0.65 in all scenarios evaluated (Table 3). The most 
assertive method is the one that shows the highest 
agreement with the rankings suggested by the TBVs. A 
high almost perfect for ordinal trait 1 (0.998) and 0.953 
for ordinal trait 2 with two categories. However, with 
the increase in the number of categories, this 
agreement decreases, respectively, to 0.94 and 0.88. In 
all scenarios, the agreement of the BayesCπ method, 
with the raking suggested by the TBVs, was superior 
to that obtained by BLASSO. The ranking of 
individuals assists in the choice of genetically superior 
individuals, which is of paramount importance in 
animal and plant genetic improvement. 

 
 
Table 3. Estimated values for the Kendall's coefficient of concordance for the two ordinal traits, considering the genomic breeding va lues 

predicted by the models and true breeding values (TBV), for the ranking of individuals with the 300 largest TBVs (1). 

Number of categories BayesCπ vs TBV BLASSO vs TBV BayesCπ vs BLASSO 

Ordinal trait 1 

2 0.687* 0.682* 0.998* 

3 0.717* 0.704* 0.937* 
4 0.727* 0.706* 0.943* 

Ordinal trait 2 

2 0.737* 0.701* 0.953* 
3 0.745* 0.727* 0.888* 

4 0.739* 0.717* 0.880* 

*Significant by chi-square test at 5% probability. 
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CONCLUSION 
 
Few differences were found between the BLASSO and 
BayesCπ methods, regarding predictive ability. Only 
for the density of 9k markers, for three or four 
categories, the BayesCπ method proved to be 
significantly (p < 0.05) superior to BLASSO. 

Among the evaluated factors, heritability and 
number of categories appear as factors that most 
influence the prediction of genomic breeding values. 

The BayesCπ method is more efficient than the 
BLASSO method in identifying regions that influence 
ordinal traits and in the ranking of genetically superior 
individuals. 
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